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Abstract

Shared by all human languages and not found in any animal’s commu-
nication systems, duality of patterning refers to the organization of the
meaningful elements in a language (e.g., words) at two distinct levels. At a
first combinatorial level, meaningless forms (referred to as phonemes) are
combined into meaningful form. At a second compositional level, mean-
ingful forms (referred to as morphemes) are composed into larger lexical
units, the meaning of which is related to the meaning of the individual
composing morphemes. The question remains wide open regarding how
and why such a structure did emerge. Here we address this question in
the framework of multi-agents modeling, where a population of individuals
plays elementary language games aiming at a success in communication.
We will focus on lexicon, though the compositional level involves syntax
as well. We present in particular a Blending Game in which we let an
initially blank slate population of individuals to bootstrap a lexicon using
an open-ended set of forms in a large meaning space modeled as a graph.
We do not make use of any notion of predefined linguistic categories,
predefined meanings or relations between objects and forms, letting the
graph to account for the semantic structure which organizes our concep-
tual understanding. The main result of this study is the identification of
two main mechanisms leading to the emergence of duality of patterning.
First, a minimal semantic mechanism for word coinage that exploits the
structure of the world to compose individual forms into words. This mech-
anism feeds the combinatorial level of the lexicon and entails that part of
the semantic structure percolates into the lexicon. Second, the existence
of noise in the message transmission and the possibility for individuals
of progressively increasing their level of comprehension each time they
are exposed to each particular form. This mechanism accounts for the
limited and low number of distinct forms present in the lexicon. These re-
sults demonstrate that the two sides of duality of patterning can emerge
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simultaneously as a consequence of a pure cultural dynamics in a sim-
ulated environment which contains meaningful relations, when a simple
constraint on message transmission fidelity is also considered.

1 Introduction

A productive approach to the study of the emergence and evolution
of language, that already led to a wealth of interesting results, is
that of language games [1, 2]. The notion of language game dates
back to Wittgenstein [1] and refers to communication acts and use of
language of increasing complexity. In the language game approach
one typically imagines a population of individuals who try to com-
municate about a topic through local, usually pairwise, interactions.
As a consequence of these efforts, a communication system can be
bootstrapped in a self-organized way, starting from a blank state
condition for the individuals. The important point here is that no
individuals can access the state of the population as a whole, nei-
ther can directly affect it, so that a shared agreement can emerge
only trough repeated, local, interactions. From this perspective, a
population of individuals can be viewed as a complex system and
language as a complex emerging property. For a recent overview of
the emerging field of Language Dynamics see [3].

The simplest, and thoroughly studied, example of language game
is that of naming. The question in this case is: how a population
of individuals can reach consensus on a common name for an ob-
ject, without any central coordination? The Naming Game [4, 5, 6]
dealt with this question, elucidating the conditions under which a
common name is adopted by the whole population or, vice versa, a
fragmentation appears, which are the time scales (as a function of
the population size) over which agreement (or a fragmented station-
ary state) can be reached.

Language is of course much more complex than a simple process
of naming. A second level of complexity is for instance tightly inter-
linked with the cognitive ability of categorization. A widely studied
example in this direction is that of colors [7, 8, 9, 10, 11]. Colors
can be adequately described in a three-dimensional and continuous
space. For instance, the three coordinates can be chosen to be hue,
saturation, and brightness. Despite the complexity of the definition
of a color, a few basic color names, like red, green, blue, yellow, are
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typically sufficient to guarantee a good level of understanding. This
means not only that a shared categorization is in place, but also
that different individuals select very similar representatives for the
same categories. In addition, color naming patterns exhibit struc-
tural regularities across cultures [12, 13]. The approach of language
games allowed recently to elucidate many questions related to the
emergence of agreement in naming colors [9, 11], the universality
of the color categorization patterns across different cultures [14] as
well as the origin of the hierarchy [12] of basic color names [15].

Further, languages exhibit complex syntactic and grammatical
structures, and a major challenge of language dynamics is to account
for their emergence [16]. Again, when syntax has to be considered,
one cannot avoid to deal with the emergence of linguistic categories.
One has, for instance, to distinguish between nouns and predicates,
and if a noun is subject or complement, and more generally one has
to be able to express actions and relations [17]. We make here a
propaedeutic step towards the more complex goal of the study of
the emergence of a complete syntax, considering the emergence of
structures at the level of lexicon. In particular, we focus here on the
so-called duality of patterning.

1.1 Duality of patterning

In a seminal paper, Charles Hockett [18] identified duality of pat-
terning as one of the core design features of human language. A
language exhibits duality of patterning when it is organized at two
distinct levels [19, 20, 21]. At a first level, meaningless forms (typ-
ically referred to as phonemes) are combined into meaningful units
(henceforth this property will be referred to as combinatoriality).
For example, the English forms /k/, /a/, and /t/ are combined in
different ways to obtain the three words /kat/, /akt/, and /tak/
(respectively written ’cat’, ’act’ and ’tack’). Because the individ-
ual forms in them are meaningless, these words have no relation
in meaning in spite of being made of the same forms. This is a
very important property, thanks to which all of the many words of
the English lexicon can be obtained by relatively simple combina-
tions of about forty phonemes. If phonemes had individual meaning,
this degree of compactness would not be possible. At a second level,
meaningful units (typically referred to as morphemes) are composed
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into larger units, the meaning of which is related to the individual
meaning of the composing units (henceforth this property will be
referred to as compositionality). For example, the meaning of the
word ’boyfriend’ is related to the meaning of the words ’boy’ and
’friend’ which composed it. The compositional level includes syntax
as well. For example, the meaning of the sentence ’cats eat fishes’
is related to the meaning of the words ’cats’, ’eat’, and ’fishes’. In
this paper, for the sake of simplicity, we focus exclusively on the
lexicon level. This has to be considered as a first step towards the
comprehension of the emergence of complex structures in languages.

It has to be noted that duality of patterning is not a necessity, as
lexicons could be organized exclusively at the combinatorial level.
If this were the case, form similarities would very rarely correspond
to similarities in meaning (and vice versa). However, lexicons of
this kind do not exist and systematic relations between form and
meaning are widespread. For example, the process through which
the word ’bedroom’ is created is fairly productive in English (e.g.,
’bathroom’, ’bedtime’, etc.) as well as in many other languages.
Indeed, even if languages vary considerably with respect to the ex-
tent to which they manifest composition at the lexical level, even
languages in which composition is used the least - such as Classical
Chinese [22] - have a great number of multimorphemic words and,
in this sense, fully exhibit lexical duality of patterning. Hockett
further pointed out that duality of patterning is not independent
of productivity, listed as another core feature of human languages.
Productivity is the ability of human beings of say things that are
never been said and, equally importantly, to understand them. Pro-
ductivity is in turn related to blending, that is the ability of “coining
new utterances by putting together pieces familiar from old utter-
ances, assembling them by patterns of arrangement also familiar in
old utterances” [18]. Again, blending is present both at the lexicon
and at the syntactic levels.

In the following, we will focus on the mechanisms that could lead
to the establishment of duality of patterning in a lexicon. To be sure,
there have been a number of previous works devoted to explain the
emergence of combinatoriality and compositionality. A thorough
review of the attempts presented in literature is far from the scope
of the present paper, and to our knowledge no self-contained and
critical collections of works in this area exist, though the community
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at large would greatly benefit of such a piece of information. Here we
shall only focus on a few aspects which are relevant for our purposes.

It should be remarked that the two facets of duality of pattern-
ing have often been studied independently from each other. For
instance, the origin of combinatoriality in speech sounds has been
investigated in [23, 24], and in [25, 26] in an evolutionary perspec-
tive. Separate modeling efforts have been devoted to find evolutive
advantages for the emergence of combinatoriality [27] and composi-
tionality [28]. Emergence of compositionality at the sentence level
have been studied for instance in [17], where it is shown how a
structured language, as opposed to an holistic one, can emerge in
a population of communicating individuals, when the scenes to be
described feature themselves a structure. In [29] the co-evolution of
compositionality and regularity is investigated through the simula-
tion of a cultural process in which syntactic categories are gradually
formed which mirror a set of predefined semantic categories.

One notable exception was presented in [30] where a recurrent
neural network approach was used to model the emergence of syn-
tax. In this case both combinatoriality and compositionality were
addressed within the same framework. However, combinatoriality
was not really an emergent property in Batali’s work, the starting
point being a set of four possible symbols to compose words: in this
sense, combinatoriality was somehow an assumption of the model.
Nevertheless, it was interesting the result that words shorten during
the communication rounds thanks to an economy principle the indi-
viduals are supposed to follow. Batali also considered composition-
ality, showing that the emergent lexicon exhibits excess similarity
between words corresponding to related meanings and something
similar to a grammatical structure does emerge. In this case the
emerging lexicon turned out to be always compositional, relying on
a clear structure in the meanings space, that was divided into two
categories. In particular Batali considers a predefined set of mean-
ing categories, predicates and referents, each coded with specific
entries of the meaning vector. This leads to a finite predefined set
of meaning agents could play with.

It should also be remarked that often studies in this ares have
been focused on evolutionary times scales (e.g., [31, 32, 33, 34, 35]),
disregarding in this way the peer-to-peer negotiation taking place on
cultural time-scales in large populations. In contrast, there is ev-
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idence suggesting that humans are capable of evolving languages
with duality of patterning in the course of only one or two gener-
ations (consider for instance Nicaraguan Sign Language [36, 37] or
the emergence of Pidgins and Creole languages [38]).

In summary, we believe that all the works discussed above have
shown the way forward to the understanding of the emergence of
linguistic units composed by a blending of sub-units in human lex-
icons. Still some important further steps remained to be done and
this is the aim of the work we present here. First of all we aim
at explaining in an unitary framework the co-emergence of combi-
natoriality and compositionality. In addition, unlike previous ap-
proaches that looked for the emergence of meaning-symbols compo-
sitional mappings out of a small bounded set of predefined symbols
available to the population, our approach adopts an open-ended set
of forms and it does not rely on any predefined relations between
objects/meanings and symbols. For instance we require combinato-
riality to emerge out of a virtually infinite set of forms which are
freely provided to a blank slate of individuals. Such set can only
be limited by means of self-organization through repeated language
games, the only purpose being that of communication. In addition,
with our simple representation of the conceptual space, modeled as
a graph, we do not hypothesize any predefined linguistic category or
predefined meaning. This choice also allows to model the effect of
differently shaped conceptual spaces and of conceptual spaces that
may differ from individual to individual.

In order to address these issues we introduce a general modeling
framework where the question of the emergence of lexicons featur-
ing duality of patterning is addressed in a self-consistent way. We
consider an initially blank slate population of individuals commit-
ted to bootstrapping a lexicon using an open-ended set of forms in
a large conceptual space modeled as a graph. We show in particular
that errors in communication as well as a blending repair strategy,
sometime adopted by individuals when communication fails, can ac-
count for the emergence of compositional as well as combinatorial
structures in the emerging lexicon, demonstrating in this way that
duality of patterning can emerge via simple cultural processes. It is
important to remark that, while duality of patterning is an emer-
gent property of language at the population level, the framework we
describe here reflects basic cognitive abilities of individuals and as
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such it is not necessarily able to bias the outcome of the evolution
towards duality of patterning. Purely non-combinatorial or combi-
natorial but non-compositional lexicons can always emerge within
our framework. Nonetheless, we show that, over a range of condi-
tions, the pressure for communication at a population level leads to
the emergence of compositional as well as combinatorial structures
in the emerging lexicon.

The outline of the paper is as follows. In section 2 we introduce
our modelling scheme, dubbed Blending Game. Section 3 reports
the analysis of the properties of the emerging lexicon. In section 4
we discuss the role of different topologies of the conceptual space in
order to test the robustness of our simulations with respect to the
structure of the underlying network. In section 5 we consider the
more general and perhaps more realistic case in which the conceptual
space is not identical for each individual. We finally draw some
conclusions in section 6.

2 The Blending Game

We here consider a population of N artificial agents committed to
name M objects. We consider the objects to be named as nodes of a
conceptual non-directional graph, where links represent conceptual
relations between pairs of objects. We adopt the representation of
the conceptual space as a graph [39, 40, 41, 42] as the simplest and
most general way of introducing semantics, if we don’t want to rely
on predefined conceptual categorization. A precise and complete
description of such a conceptual space being out of reach, we make
very general hypotheses about the structure of the graph we use to
model it, and we further check the robustness of our results with
respect to different plausible choices.

For simplicity, we consider here a population of agents with an
homogeneous structure, where each agent (individual) has the same
probability of interacting with everyone else.

Starting from scratch and without any central coordination, the
individuals perform pairwise language games aimed at naming the
objects in their world. Each individual is characterized by its inven-
tory or memory, i.e., a collection of lists of name-object associations
that are empty at the beginning of the process and evolve dynami-
cally as time progresses. As already introduced in language games [1]
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devoted to Naming [4, 5, 6] and Category formation [11, 14], at each
time step two agents are randomly selected, one to play as Speaker
(S), the other one as Hearer (H). S randomly chooses an object,
named Topic (T), to discuss, his goal being that of uttering a word
which enables H to correctly identify T.

In order to study the emergence of duality of patterning, we con-
sider the possibility for any word to be composed either of a single
form or of an ordered linear concatenation of forms1. The emergence
of words composed of more than one form arises in a natural way
through a mechanism of blending that acts as a repair strategy.

The main ingredients of the Blending Game are two. First, we in-
troduce noise in comprehension and this applies to all games when-
ever a Hearer tries to understands a word uttered by a Speaker.
This is an essential ingredient responsible for keeping the number
of different forms shared by the whole population limited and low,
without any a priori constraints on it. Second, along with the basic
strategy of word creation, the game features a repair strategy that
exploits the structure of the world to create new words. Sometimes
the blending is independent of the meaning of these words, feeding
the combinatorial level of the lexicon. On other occasions, blend-
ing involves words which are usually taken from the inventories of
related objects (that is, objects connected by a link to the current
topic), thus feeding the compositional level of the lexicon. Thanks
to this compositional blending, part of the semantic structure which
organizes the conceptual understanding of the world percolates into
the lexicon.

2.1 Elementary interaction

S has to name the topic T.

(i) If S does not have already a word for it, she invents a word
consisting of a single form which is novel for the entire pop-
ulation. We note that the constraint for the invented word
to consist of a brand new form for the whole population
corresponds to a virtually infinite, i.e., open-ended, reper-
toire of symbols. We made this (perhaps extreme) choice
in order not to impose any a priori limit to the number of

1Here a form is intended as the meaningless unit of a signal.
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Speaker

Hearer

Before After

Topic O2 O3 O4

f3f3f12 f4f19f13 f4f19 f73
f17f26f20 f16f47 f15 f20f3

f23f18f0f0 f27f1f8
f0f22f0

Topic O2 O3 O4

f3f3f12 f4f19f13 f4f19 f73
f17f26f20 f16f47 f15 f20f3

f1f1 f23f18f0f0 f27f1f8
f0f22f0

Topic O2 O3 O4

f1f2f3 f3f3f5 f8f6f1 f9f4f5
f2f7 f1f4f12 f12f3f7 f7f5f7
f1f1 f5f9 f3f9

f3f8f15

Topic O2 O3 O4

f1f2f3 f3f3f5 f8f6f1 f9f4f5
f2f7 f1f4f12 f12f3f7 f7f5f7
f1f1 f5f9 f3f9

f3f8f15

FAILURE

Speaker

Hearer

Before After

Topic O2 O3 O4

f3f3f12 f4f19f13 f4f19 f73
f17f26f20 f16f47 f15 f20f3

f1f1 f23f18f0f0 f27f1f8
f0f22f0

SUCCESS

Topic O2 O3 O4

f1f1 f3f3f5 f8f6f1 f9f4f5
f1f4f12 f12f3f7 f7f5f7

f5f9 f3f9
f3f8f15

Topic O2 O3 O4

f1f2f3 f3f3f5 f8f6f1 f9f4f5
f2f7 f1f4f12 f12f3f7 f7f5f7
f1f1 f5f9 f3f9

f3f8f15

Topic O2 O3 O4

f1f1 f4f19f13 f4f19 f73
f16f47 f15 f20f3

f23f18f0f0 f27f1f8
f0f22f0

Figure 1: Examples of Games. Top. Example of a failed game. In this game
the Speaker S selects the Topic and decides to utter the word f1f1. This word
is unknown to the Hearer H since f1f1 is not present in any of H’s inventories.
In this case the game is a failure and H adds the word f1f1 to her inventory for
the Topic. Bottom. Example of a successful game. In this game the Speaker S
selects the Topic and decides to ls utter the word f1f1. This word is known to
the Hearer H since f1f1 is present in H’s inventory for the Topic. In this case
the game is a success and both S and H remove from the Topic’s inventory all
the competing words but f1f1.
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possible symbols in the lexicon. We are interested in in-
vestigating under which conditions, even in this scenario,
only a very limited number of different forms gets eventu-
ally fixed in the population’s lexicon.

(ii) If S already possesses one or more words for T in its inven-
tory, she chooses the last winning-word, if it exists (i.e.,
the word that allowed the last successful communication
about T), or a random word otherwise.

H has to guess T.

As an essential ingredient of the model, we consider an initial
imperfect understanding due to noise in communication. The
guessing procedure consists thus of two parts: H has first to
understand the word uttered by S, then she has to associate an
object to that.

(i) H parses the heard word into its component forms, under-
standing independently each of them (for instance, if S
utters the word f2f16f1, H tries to understand separately
the forms f2, f16 and f1, recomposing again the word only
at the end of the procedure). More precisely, H correctly
understands each form with a time dependent probability:

Pt(f) =

(
1− exp

(
−nt(fi)

τ

))
(1)

where nt(fi) is the number of times H has heard the form
fi up to the current time t, and τ is a characteristic mem-
ory scale. If H does not understand a form, she replaces
it with a random form from her inventory, i.e., a random
form among all those composing any word she used to name
any object. If her inventory is still empty, she replaces the
form not understood with a brand new one, i.e., an in-
vented form. In the end, the word understood by H is thus
composed by the same number of forms (and in the same
order) as in the uttered word, and it is equal to the uttered
word except, possibly, for the misunderstood forms.

(ii) H checks whether she has already the word understood in
her inventory, associated to any object. If so, H selects the
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corresponding object and if the word is associated with
more than one object she chooses at random among them.

If H correctly guesses T, the game is a success and both agents
delete all but the winning word from their inventories for T. If
this is not the case, the game is a failure and H updates her
inventory for T by adding the word understood (see figure 1).

At odds with the standard Naming Game, in case of failure,
here S has a second (and last for the current interaction) chance
to communicate about T, adopting a blending repair strategy.

S names the topic T by adopting the blending repair strategy.

S chooses two objects in the world. If T has at least two neigh-
bors with non-empty inventories for S, she chooses among them,
otherwise she considers two random objects. Having chosen the
two objects, S chooses randomly a word from the inventory of
each of them (for instance f12f18f2 from the first object and
f13f1f22f3 from the second). She then composes the new word
for T by taking the initial part (of random arbitrary length)
from one (e.g., f12f18) and the final part (again of random ar-
bitrary length) from the other (e.g., f3), keeping the order of
the parent words in the composed word (in our example she
would utter f12f18f3).

When the blending repair strategy is adopted, the same com-
munication and understanding procedure as before is consid-
ered and the game is declared a success or a failure with the
same criteria as in the first communication attempt. Thus, in
case of success both agents delete all their words from their in-
ventories relative to T, but the winning one. In case of failure,
H inserts also this second word, as she understands it, in its
inventory for the topic T.

Figure 2 synthetically summarizes the structure of the game.

3 Properties of the emerged lexicon

All the results we present below are obtained with a conceptual
space modelled as a Erdős -Rényi (ER) random graph [43, 44]. We
will later see that the main results are not affected, both from a
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Speaker

Hearer

Uttered 
word

girlfriend

boyhood

boyfriend

Inventory update
and next game

Word
understood

Blending repair 
strategy

Holistic invention 
strategy

Utterance of an 
existing word

lastwinningword
randomwordbrandnewword

World girlfriend

boyhood

Topic

Understanding

Failure

Success or 
second failure

Choosing 
and naming 
the Topic

Success

Figure 2: Diagram of the Blending Game. In each game a Speaker and a Hearer
are chosen. The Speaker chooses a Topic and utters a name for it (i.e., it
produces one or more meaningless forms, consisting of unique identifiers, e.g., f0,
f1, etc.). If her inventory for the Topic is empty she invents a brand new word,
i.e., a word never appeared in the whole population for all the possible objects.
Alternatively, she chooses one of the existing word (the last-winning one). The
hearer has to understand the uttered word and to relate it to an object on
the basis of the content of her previously recorded information (her repertoire).
The understanding phase is ruled by the parameter τ , a characteristic memory
scale introduced through eq. 1. If the communication fails the Speaker adopts
a blending repair strategy which consists in inventing a new word composed
by reusing parts of already proposed words, preferably associated with object
nearest neighbors of the chosen topic. In the example depicted, boyfriend is
composed out of boyhood and girlfriend. If also after the adoption of the repair
strategy the communication fails, the Hearer updates her inventory with the
word just heard. If the game is a success, the inventories of both the Speaker
and the Hearer for the Topic are cleared except for the successful word.
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qualitative and quantitative point of view, by the particular struc-
ture of the conceptual graph. We will report examples by using: (i)
uncorrelated random scale-free (UCM) graphs [45]; (ii) an experi-
mentally derived word-association graph, namely the South Florida
Free Association Norms [46]. We will give below details on both the
structures.

All the results that follow are averaged over different (100) real-
izations of the process on the same conceptual graph. We checked
that a further average on different graphs with the same statistical
properties (e.g., ER random graphs with the same link probability
plink) produces fluctuations that remain within the reported error
bars.

3.1 Success rate, synonymy and homonymy

Let us considering the dynamics of the Blending Game by looking
at the time evolution of the success rate and of the homonymy. The
communicative success starts from zero and progressively increases,
leading eventually to a fully successful shared communication sys-
tem with an “S”-shaped time behaviour. At the same time, both
homonymy is defeated after a transient phase in which it spreads
widely.

It is interesting to note the role of the blending mechanism in
defeating homonymy. Let us consider the standard Naming Game
with more than one object, in which invention always happen with
a brand new word, that is a word never used before by any agent
to name any object. In this case homonymy cannot be created
and the inventories corresponding to different objects are totally
uncorrelated. Let us now introduce in this dynamics noise in com-
munication. We denote this model Naming Game with noise in
communication. When the Hearer does not correctly understand
an heard form, she can borrow a form from any of her inventories.
In this way the inventories associated to different objects starts to
correlate. In this case, homonymy can arise, and if it gets fixed
in the whole population, i.e., all the agents have the same unique
name for more than one object, it will last forever. At the same
time, success cannot be rigorously one, since a finite probability of
misunderstanding exists, due to this ambiguity generated by the
homonymy. On the contrary, the blending mechanism provides a
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Figure 3: From left to right: Homonymy, success rate and synonymy as a func-
tion of time (number of games), averaged over sliding time windows, for the
Blending Game (top) and the Naming Game with noise in communication (bot-
tom). Homonymy is here defined as the number of pairs of objects that have
at least an associated word in common in an individual inventory, divided by
the number of pairs M(M − 1)/2 and averaged over all the agents. Synonymy
is defined as the average number of words associated to each object and av-
eraged over all the agents. We define here a normalized link probability for
the ER random graph as pM = plink

p∗ , where p∗ = logM
M is the threshold above

which the whole graph in connected with probability one in the infinite size
limit (M → +∞). Similarly, a normalized time scale parameter is defined as
τM = τ

M . Results are reported for pM = 0.5 and for different values of the
learning parameter τM . The number of agents and the number of objects in
the environment are fixed respectively to N = 10 and M = 40 and results are
averaged over 100 realizations of the dynamics on the same objects graph (see
main text for further details).
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Figure 4: Success rate and convergence time for different values of the conceptual
space and population sizes. Left: The success rate is reported as a function of
time (number of games) for different values of M (left) and N (right), with
pM = 1 and τM = 1. The curves for different values of M collapse if time
is rescaled with a factor M logM , while the curves for different values of N
collapse if time is rescaled with a factorN1.5, as in the original Naming Game [5].
Right: Time needed for the system to reach convergence for different values of
M (bottom) and for different values of N (top), as a function of pM and with
τM = 1. We rescaled the curves in order to superimpose them on the values of
pM where the convergence time is minimal.

way to repair homonymy. In case of failure in understanding, in fact,
the Speaker can invent a new word through the blending procedure.
In this way homonymy can be defeated and agents can achieve a
perfect success in communication. In figure 3 (left) we report the
time evolution of homonymy both for the Blending Game (top) and
for the Naming Game with noise in communication (bottom). As
for the communicative success, it starts from zero and progressively
increases, leading eventually to a fully successful shared communi-
cation system with an “S”-shaped time evolution (figure 3, center).
Synonymy (figure 3, right) follows a time behaviour very similar to
that of homonymy, with the difference that it is defeated both in
the Blending Game and in the Naming Game with noise in commu-
nication. In both cases the population reaches consensus on naming
the different objects.

In figure 4 we show how the time evolution of the success rate
scales with the number of objects M and with the population size
N . We look both to the scaling of the onset of success in communi-
cation (the vertical part of the “S”-shaped curve), corresponding to
the peak in the homonymy and synonymy curves, and to the scaling
of the convergence time tc, i.e., the time needed by the population
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Figure 5: Left: in the main figure the distribution of word length L for different
τ values is reported, fixing pM = 0.5. f(L) = aLbcL is the observed empirical
function [47] (solid black line, with fitting parameters a = 0.74, b = 3.7, c =
0.18). In the top inset we show the same distribution fixing τM = 1 for different
values of pM . Note that here the curves overlap, indicating that the word length
distribution does not depend on the objects graph connectivity. The number of
agents and the number of objects in the environment are fixed respectively to
N = 10 and M = 40. Right: the same distribution for different values of M
(top) and for different values of N (bottom), with pM = 1 and τM = 1. In the
inset of the two figures we report the collapse of the distributions by rescaling
the words length L respectively by log(M)0.5 and by log(N)0.5. This indicates
a very weak dependence of the average word-length both on the size M of the
conceptual space and on the population size N .

to reach consensus on naming all the M objects. Let us call to the
time at which the transition from a success rate close to zero to a
success rate close to one occurs. We find to(M) ∼M log(M), while
we recover the same behaviour as in the Naming Game for the scal-
ing with the population size: to(N) ∼ N1.5. The convergence time
tc features a stronger dependence both on M (tc ∼ (M log(M))1.5)
and on N . Interestingly, in the latter case, the same dependence
as in the Naming Game (tc(N) ∼ N1.5) is recovered only for inter-
mediate values of the link probability plink. We will see that these
values of plink correspond to an intermediate level of structure in
the conceptual space, leading to the emergence of compositionality
in the emerging lexicon.
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3.2 Words length distribution

Due to the blending procedure, the lexicon shared by the popula-
tion contains words that are composed by several forms. A typical
word in the lexicon is for instance f23f18f0f0, composed by the el-
ementary forms f23, f18 and f0. We here consider the length of a
word as the number of forms composing it. In figure 5, the words
length distribution in the emerging lexicon is reported. We observe
that the observed limitation on the word length is an outcome of the
negotiation dynamics, emerging without any explicit constraints on
it. The distribution features a typical shape that has been observed
in human languages [47], well fitted by the function f(x) = axbcx,
which corresponds to the Gamma distribution when the parameters
are suitably renamed [47]. Figure 5 (left) shows the word length
distribution for different values of the rescaled memory parameter
τM = τ/M and of the rescaled graph connectivity pM (see the cap-
tion of figure 5 for the definition). While the distribution is not
affected by the graph connectivity, a very light dependence on τM
is observed. Further, the peak of the histogram moves very slowly
when changing the number M of objects to be named (figure 5, top
right) or the number N of agents in the population (figure 5, bot-
tom right). The average word length in the emerging lexicon is thus
very stable when changing the parameters of the model, remaining
finite and small, and comparable with the length of words in human
languages.

3.3 Frequency-rank distribution of elementary forms

As a deeper investigation of the properties of the emerged lexicon,
we consider the frequency-rank distribution of the different forms
composing the words (figure 6). As in the case of the word length
distribution, the frequency-rank distribution for forms does not de-
pend on plink (see figure 6 top right). However, we note in this case
a clear dependence on the memory parameter τM . In particular,
the higher τ (for M fixed), i.e., the lower the fidelity in communica-
tion, the smaller the number of distinct forms on which the agents
eventually find agreement. Since the invention rate of new forms
does not depend on τ , the effect of a high τ is that of strengthening
the selection process, reducing in this way the number of forms that
get fixed in the population. The dependence of the frequency-rank
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Figure 6: Top left: frequency-rank distribution for elementary forms is shown
for different values of the parameter τM keeping fixed pM = 0.5, N = 10 and
M = 40. Top right: the same distribution fixing τM = 1 and for different
pM , showing that the distribution of elementary forms does not depend on
the objects graph connectivity. Bottom left: frequency-rank distribution for
elementary forms for different values of M , with pM = 1 and τM = 1. In
the inset we show the number of distinct forms F in the emerged lexicons as
a function of τM and for pM = 1, rescaling the curves in order to let them
overlap for high value of τM . When τM is not high enough, the noise ceases to
be relevant and both the absolute number of distinct forms increases and the
dependence on M becomes stronger. We also report two fits obtained with a
Yule distribution (red solid line) f(R) = aRbcR, which has been hypothesized to
reproduce the actual distribution in human languages [48], and a Yule-like (black
solid line) distribution, f(R) = α exp−βRγRδ [49]. The two functions coincide
for γ = 1. The Yule function seems to fit better and better our distributions
as M increases, while a finite-size distribution is better fitted by a Yule-like
distribution. Bottom right: frequency-rank distributions for elementary forms
for different values of N , again with pM = 1 and τM = 1. In the inset again the
number of distinct forms F in the emerged lexicons as a function of τM and for
pM = 1, again rescaled in order to overlap for high values of τM .
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distribution, as well as of the number of distinct forms (F ) in the
emerged lexicon, on the number of objects M and on the popula-
tion size N is very weak (figure 6, bottom), again, as in the case of
the words length distribution, pointing to the possibility of compar-
ing the obtained results with human languages properties. Indeed,
it is worth noticing that for large values of τ , the frequency-rank
distribution we observe is remarkably similar to the corresponding
distribution observed in human languages [48] for which a Yule-like
distribution [49] has been hypothesized (see figure 6, bottom left,
and the figure caption).

3.4 Combinatoriality

We now introduce a measure of combinatoriality to quantify the
property of a communication system to combine and re-use a small
number of elementary forms to produce a large number of words.
Following the idea in [50], we introduce a real-valued quantity rang-
ing in the interval [0 : 1] that quantifies how frequently forms recur
in the emerged lexicon, according to the following formula:

C =

∑
i(m(fi)− 1)

(M − 1)F
, (2)

where the sum runs over all the F distinct forms present in the
emerged lexicon and m(fi) is the number of distinct objects whose
name includes the form fi. The term m(fi) − 1 takes into account
only the forms that are used to name at least two objects, i.e., only
the forms that are actually re-used. M is the number of objects
to be named. The results for the combinatoriality are reported in
figure 7 (left) as a function of τM and for different values of pM .
Again, a negligible dependence on plink is found, while, as in the
case of the frequency-rank distribution, a clear dependence on τM
is found, the maximal combinatoriality occurring for high values of
τM . This can be understood if one thinks that for a perfect level of
understanding there is no selective pressure acting on the different
forms and many distinct forms are eventually fixed in the lexicon
with a small re-use rate, i.e., little combinatoriality. In a sense,
the limit of small τM is the holistic limit of our model, i.e., the
limit in which forms stand for the meaning as a whole and have no
meaningful subparts. In our case the word holistic refers both to
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Figure 7: Left: combinatoriality C (see the text for definition) for different
values of pM as a function of τM . The number of agents and the number of
objects in the environment are fixed respectively to N = 10 and M = 40.
Center: combinatoriality C for different values of M as a function of τM and for
pM = 0.5. Although the curves are very noisy, the value of the combinatoriality
is very weakly dependent on M . Right: combinatoriality C for different values of
N as a function of τM , rescaled with the number N of agents, and for pM = 0.5.

the case where every word of the lexicon is composed by a single
form or cases where several forms are needed for a word but none
of them is re-used in the whole lexicon. Summarizing, when the
effort for understanding new forms is sufficiently high, one finds,
at the lexical level, features similar to the ones observed in real
languages, such as the word length distribution and the number
and the frequency of use of the different forms. In this perspective,
combinatoriality emerges as a workaround to overcome the problem
of noisy communication. In figure 7 (center and right) we also show
the dependence of the combinatoriality on the number of objects M
and on the population size N , again highlighting an extremely weak
dependence.

3.5 Compositionality

Let us now turn to the compositional aspects of the lexicon, the
aim here being that of establishing whether, in the emerged lexi-
con, words for semantically related concept are expressed through
morphologically similar words.

Here we measure the semantic similarity of two objects in terms
of their distance on the graph describing the conceptual environ-
ment. In addition, we need to define a measure of morphological
similarity between words. To this end we introduce a Master-Mind-
like (MM) measure. Given two words w1 and w2, each composed of
a certain number of forms, the Master-Mind-like (MM) measure of
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form similarity is defined as follows: after the two words have been
aligned, either making the left-end or the right-end coincide, we sum
1 whenever the two words share the same form in the same position
and 0.5 for the same form in different positions. The MM measure
will be the maximum between the left-end and the right-end align-
ments. The MM measure conveys the idea that meaningful forms
are often included in words as a suffix or a prefix, and in general in a
well defined position. However, the results obtained turn out to be
stable against different measures of words similarity (refer to [51]).

As a measure of compositionality, we measure the excess simi-
larity of words used to name related objects (at low distance in the
graph) when compared to the similarity of randomly chosen words.
In order to do that, we consider the average difference between the
similarity between each pair of words as a function of the distance
of the corresponding objects in the conceptual graph, and the same
value computed in the random case, obtained by reshuffling the as-
sociations between words and objects. In figure 8 (left), we report
the excess similarity for a fixed value of τM and several values of
pM as a function of the topological distance d on the conceptual
graph. The inset reports the same measure for a fixed value of pM
and different values of τM . Compositionality is evident in the figure:
the more closely related the words, the higher the excess similarity.
At odds with the above studied properties of the lexicon, the ex-
cess similarity only weakly depends on τM , while strongly depends
on pM . This indicates that a percolation of the organization of the
world into the lexicon is possible when the world has a non-trivial
semantic structure, i.e., in our case when plink is different from zero
and from one. In the former case no relation between objects exists,
while in the latter case all the objects are equally related (all are
at distance one in the graph). Diluted graphs are more prone to
induce compositionality. As for combinatoriality, the dependence of
compositionality on the size M of the conceptual space and on the
number N of agents in the population is extremely weak (figure 8
right, top and bottom).

3.6 Summary of the results

We analyzed the main properties of the emerged lexicon as func-
tions of the two parameters of the model, the graph connectivity
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Figure 8: Excess Master-Mind-like similarity of words as a function of the dis-
tance d of the corresponding objects on the graph. The difference between the
actual similarity and its random value computed on a reshuffled communication
system is shown (see text for details). A decrease in the excess similarity as a
function of the topological distance d is the signature of the emergence of com-
positionality; in particular, compositionality implies higher similarity among
words which are closer in the semantic space. The topological distance on the
object graph is our proxy for the semantic relatedness. The MM similarity (see
text) is adopted here to compute similarity between words. Left: results are
reported for N = 10 and M = 100. Results are shown for different values of
the objects graph connectivity pM , keeping fixed τM = 1 (main figure) and for
different values of τM keeping fixed pM = 0.2 (inset). Right: results for differ-
ent values of M (top) and for different values of N (bottom), for τM = 1 and
pM = 0.2. Again, the results depend very weakly both on M and on N , the
excess similarity becoming slightly more pronounced as M and N increase.
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plink and the memory scale τ , as well as a function of the number
of objects M on the conceptual space and the number of agents N
in the population. We found that properties of the lexicon related
to the combinatoriality, namely the words length distribution, the
frequency of use of the different forms and a measure for the com-
binatoriality itself, reflect both qualitatively and quantitatively the
corresponding properties as measured in human languages, provided
that the memory parameter τ is sufficiently high, that is that a suffi-
ciently high effort is required in order to understand and learn brand
new forms. Conversely, the compositional properties of the lexicon
are related to the parameter plink, that is a measure of the level of
structure of the conceptual graph. For intermediate and low values
of plink, semantic relations between objects are more differentiated
with respect to the situation of a more dense graph, in which every
object is related to anyone else, and compositionality is enhanced.
In summary, while the graph connectivity strongly affects the com-
positionality of the lexicon, noise in communication strongly affects
the combinatoriality of the lexicon.

4 Role of the topology of the conceptual space

We here introduce networks with different topologies in order to test
the robustness of our simulations with respect to the structure of
the underlying network.

4.1 Uncorrelated random scale-free networks

Each node i of a network is first characterized by its degree ki (num-
ber of links) and a first characterization of the network properties is
obtained by the statistical distributions of the nodes’ degree, P (k).
In order to quantify the topological correlations in a network, two
main quantities are usually measured. The clustering coefficient ci
of a node i measures the local cohesiveness around this node [52]. It
is defined as the ratio of the number of links between the ki neigh-
bors of i and the maximum number of such links, ki(ki− 1)/2. The
clustering spectrum measures the average clustering coefficient of
nodes of degree k, according to
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C(k) =
1

Nk

∑
i

δk,kici . (3)

Moreover, correlations between the degrees of neighboring nodes
are conveniently measured by the average nearest neighbors degree
of a vertex i, knn,i = 1

ki

∑
j∈V(i) kj, where V(i) is the set of neighbors

of i, and the average degree of the nearest neighbors, knn(k), for
vertices of degree k [53]

knn(k) =
1

Nk

∑
i

δk,kiknn,i. (4)

In the absence of correlations between degrees of neighboring ver-
tices, knn(k) is a constant. An increasing behavior of knn(k) cor-
responds to the fact that vertices with high degree have a larger
probability of being connected with large degree vertices (assortative
mixing). On the contrary, a decreasing behavior of knn(k) defines a
disassortative mixing, in the sense that high degree vertices have a
majority of neighbors with low degree, while the opposite holds for
low degree vertices [54].

The results presented in the previous sections were obtained by
considering the homogeneous Erdős -Rényi random graph [43, 44],
in which nodes are linked with a uniform probability plink. In this
case, the graph features a small diameter and a small clustering co-
efficient, and the degree distribution is homogeneous and binomial.
The specific properties of the graph depend on plink. In particular
if M is the number of nodes, for plink > log(M)/M the graph will
almost surely be connected.

We consider now a random scale-free network obtained from the
uncorrelated configuration model (UCM) [45]. UCM graphs present
a broad degree distribution P (k) ∼ k−γ and are constructed in such
a way to avoid two- and three-vertex correlations, as measured by
the average degree of the nearest neighbors knn(k) and the clustering
coefficient of the vertices of degree k, respectively. The average
degree distribution is finite for the values of the exponent γ > 2,
and the second moment of the distribution in finite for γ > 3. We
consider here two values for the degree distribution exponent, one
below and one above the latter threshold: γ = 2.5 and γ = 3.5. We
find that all the considered observables do not depend on the value
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of γ and, moreover, show the same qualitative (and in most cases
quantitative) behaviour observed for an homogeneous Erdős -Rényi
random graph with the same number M of nodes (see Figure 9).

4.2 South Florida Free Association Norms

In this section we present the results obtained when considering a
conceptual graph taken from a real-world experiment, namely the
South Florida Free Associations Norms [46]. South Florida is the
outcome of a great effort started back in 1973 and lasted almost
thirty years. The persons taking part to the experiment were pre-
sented with input words (’cues’) and had to give another word as
answer, following a free association. The issued word is called ’tar-
get’. The database consists of roughly 5000 words and 700000 asso-
ciations. Each dataset yields a graph whose nodes are the words and
whose edges correspond to the associations between words made by
the players/subjects. Each edge is moreover weighted by the num-
ber of times that the corresponding association has been made. The
network formed by these associations, the Word Association Graph
(WAG), is directed (one target word being an answer to a cue, the
links are obviously directed from cue to target) [55]. In this ex-
periment we consider the South Florida Word Association Graph
as a proxy of the conceptual graph. In doing this we disregard
the directed character of the original graph as well as its weights.
Figure 10 reports the results for the words length distribution, the
frequency-rank distribution and the Excess Master-Mind similarity.
The results are perfectly online with those obtained with random
graphs and UCM graphs, pointing to the robustness of our results
with respect to the choice of the structure of the conceptual space.

5 Differences in the conceptual space of differ-
ent individuals

We here consider the more general and perhaps more realistic case in
which the conceptual space is different for each individual. We still
consider static conceptual spaces, referring to a future work for the
possibility of co-evolving conceptual spaces and language. However,
differences in the conceptual spaces of different individuals are taken
into account, modeled as differences in the connection between the
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Figure 9: Dependence of the graph structure In this figure we report the re-
sults obtained by considering a different structure of the conceptual space. We
considered in particular random scale-free networks obtained from the uncor-
related configuration model (UCM) [45], characterized by a degree distribution
P (k) ∼ k−γ . In our case we used γ = 2.5 and γ = 3.5. Top Left. Word length
distribution. The distributions of words length for different τ and for the two
values of the degree distribution exponent γ are reported. As observed in the
text, the word length distribution (and thus the average word length) does not
depend on γ and is perfectly comparable to that obtained when considering
Erdős-Rényi random graphs. Top Right. Frequency-rank distribution for ele-
mentary forms. The frequency-rank distribution for elementary forms is shown
again for different values of the parameter τ and γ = 2.5. Again the results are
perfectly comparable to those obtained when considering Erdős-Rényi random
graph. Bottom. Excess similarity of words as a function of the distance of the
corresponding objects on the graph. The excess MM similarity (see text) for dif-
ferent values of τ and for the two values of γ. Provided a non trivial structure
of the world is preserved, the results do not depend on the actual value of the γ
exponent. We here considered a graph with M = 100 nodes in order to have a
greater variability. Note that the increase in excess similarity at large distances
is an artifact, as the large error bars indicate, of the small number of objects
at those distances in the graph. All the above results are averaged over 100
realizations of the process on the same graph with population size N = 10 and
number of objects M = 40.
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Figure 10: Results for the South Florida Word Association Graph In this figure
we report the results obtained by considering the South Florida Word Asso-
ciation Graph as a proxy for the conceptual space. Top Left. Words length
distribution. The distributions of words length for different τ are reported. The
words length distribution (and thus the average word length) is perfectly com-
parable to that obtained when considering Erdős-Rényi random graphs. Top
Right. Frequency-rank distribution for elementary forms. The frequency-rank
distribution for elementary forms is shown again for different values of the pa-
rameter τ . Again the results are perfectly comparable to those obtained when
considering Erdős-Rényi random graph. Bottom. Excess similarity of words as
a function of the distance of the corresponding objects on the graph. The excess
MM similarity (see text for details) for different values of τ . Note that the in-
crease in excess similarity at large distances is an artifact of the small number
of objects at those distances in the graph. All the above results are obtained
with a population size N = 10 and number of objects M = 40.
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objects to be named. More in particular, we start from an Erdős
-Rényi random graph with a given link probability plink, that act
as a template. For each individual, we then reshuffle each link of
the template graph with a probability perr in the following way: we
disconnect two random objects that were connected and we connect
two random objects that were disconnected. In this way, the new
graphs share the same statistical properties of original one. The dif-
ference between the conceptual spaces of different individuals is thus
modulated by the value of perr. In figure 11 we show results for the
compositionality in the emerged lexicon for different values of perr.
We observe that provided the different graphs are not completely
uncorrelated, a certain degree of compositionality still emerges. As
expected, compositionality is a decreasing function of perr.

6 Discussion and conclusion

In this paper we focused on the origin of duality of patterning at
the lexicon level. We addressed this question in the framework of a
multi-agents model, where a population of individuals plays simple
naming games in a conceptual environment modeled as a graph.

Through an extensive set of simulations we demonstrated the ex-
istence of two conditions for the emergence of duality of patterning
in a pure cultural way. The first condition is represented by a noisy
communication, i.e., a constraint on the fidelity of message transmis-
sion. No predefined relations between objects/meanings and forms
are hypothesized and we adopted a virtually infinite, i.e., open-
ended, repertoire of forms. Despite this freedom, the number of
different forms that get eventually fixed in the population’s lexicon
is kept limited by the constraint on transmission fidelity. The second
condition is a blending repair strategy that allows to overcome errors
in communication by allowing the creation of new words, crucially
exploiting a shared conceptual representation of the environment.
New words in the lexicon can be created in two ways. They can be
holistically introduced as brand new forms or constructed through a
blending strategy that combines and re-uses forms taken from other
object’s names. At the individual level, the mechanism of blend-
ing is thus introduced as an option to be exploited when the first
communication attempt resulted in a failure.

The blending strategy we refer to here must be thought as a gen-
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Figure 11: Excess Master-Mind-like similarity of words as a function of the
average distance d of the corresponding objects on the different graphs, for dif-
ferent values of perr. A decrease in the excess similarity as a function of the
topological distance d is the signature of the emergence of compositionality.
Here d indicates the distance between two objects in a graph averaged over all
the conceptual graphs of the different individuals in the population. Results are
averages over 100 realization of the process and are shown for the parameters
values: N = 10, M = 100, pM = 0.5 and τM = 1. We note that compositional-
ity is a decreasing function of the graphs dissimilarity parametrized by perr. We
also note a saturation for perr = 1 on a value slightly higher than zero. This is a
finite-size effect, indicating that a relation between language and meaning is still
present when looking at the conceptual graph of some individuals. We would
recover compositionality strictly zero when perr = 1 in the infinite population
(N → +∞) limit.
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eral mechanism by which different bits of words are put together
through blends, compounds or other morphological structures. In-
terestingly, endowing individuals with a blending ability is not suf-
ficient in order to observe a lexicon featuring duality of patterning.
For instance combinatorial abilities are observed also in nonhuman
primates (e.g., monkeys and great apes) though they still appear not
having triggered the emergence of duality of patterning [56]. In our
modelling scheme duality of patterning emerges only when the two
conditions mentioned above are paralleled by specific requirements
for the structure of the conceptual space.

Two crucial manipulations in the game were (i) the degree of
transmission fidelity and (ii) the density of the network representing
semantic relations among the objects.

Let us first consider combinatoriality. Combinatoriality, meant
both as forms reuse and economy, does not always emerge in our
modeling framework. A significant level of noise is crucial for it to
emerge. When the level of understanding is almost perfect (ex-
tremely low noise), the number of distinct forms composing the
emerged lexicon turns out to be very high with respect to the num-
ber of objects to be named (in particular, higher than the number
of objects), the lexicon featuring a very low degree of combinatori-
ality (the fact that the combinatoriality is not strictly zero depends
on the specific definition of combinatoriality we introduced). Con-
versely, a high level of combinatoriality as well as a low number of
distinct forms in the emerging lexicon occur when the communica-
tion is noisy. Moreover, it has to be noted that we always start
from a truly potentially infinite set of forms, without imposing any
constraints on the words length. Both the limited number of forms
we find in the emerging lexicon and the limited length of words are
outcomes only of the communication process. It is important to em-
phasize that all these statements are not only qualitative. Rather,
they are suitably quantified in terms of the parameter τ . These re-
sults suggest that combinatoriality enhances message transmission
in noisy environments [27] and emerges as a result of the need of
communicative success.

Let us now consider compositionality. Again a compositional
lexicon does not always emerge and, as already noted, the blend-
ing repair strategy is not enough for compositionality to emerge.
The level of compositionality is not strongly affected by the level
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of noise, but strongly depends on how much the conceptual space
is structured. In particular, the lexicons developed by the agents
exhibited clear signs of compositionality when the networks repre-
senting semantic relations among the objects were neither too sparse
nor too dense. This can be understood as follows: compositionality
does emerge if the agents are able on the one hand to find common
features in different objects, on the other hand to make distinctions
so that not all the objects are equally related to each other. Thus,
compositionality emerges as a consequence of the organization of
our conceptual space [40, 57].

In summary, the ensemble of our results points to the following
scenario. Combinatoriality seems to reflect the effort of communi-
cating in a noisy environment, while compositionality seem to reflect
the organization of our conceptual understanding. As further anal-
ysis, we manipulated the type of semantic network as well as the
number of objects and agents in the simulations, showing the ro-
bustness of the modelling approach we are proposing with respect
to parameter manipulations.

These results are important because they demonstrate for the
first time that the two sides of duality of patterning can emerge
simultaneously as a consequence of a purely cultural dynamics in
a simulated environment which contains meaningful relations. In
addition, the relevance of the interplay between the structure of the
conceptual space and simple communication strategies of humans
has been highlighted. Additionally, the study provided a number of
measures which capture basic linguistic properties of the emerged
languages. In other words, the cultural modeling of language emer-
gence has begun to produce predictions which are amenable to test-
ing with realistic samples of natural languages [58, 59].

Before concluding let us now briefly discuss some generalizations
of the actual model that will be addressed in future works. First
of all, it is interesting to consider the co-evolution of the concep-
tual spaces of each individual and language. The crucial question
is: how language itself shapes (and is shaped by) our conceptual
understanding of the world? We saw in the present model that lan-
guage is shaped by the way we conceptualize the world, the next step
will be investigating to which extent the conceptual understanding
of different individuals are affected by repeated language games.
Second, we here considered the blending strategy as an additional
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opportunity for the speaker to achieve success in communication.
However, the ability of blending plays also a crucial role in under-
standing: humans are able not only to speak about concepts they
never expressed, but also to understand a concept they never heard
before. An interesting generalization of the present model would be
that of investigating the role played by this generalization ability in
achieving success in communication also when a low level of noise is
always present.

Further, the model should be generalized in order to include syn-
tax. In particular, the crucial step would be investigating how a
population of individuals can bootstrap a language where catego-
rization and syntax both emerge as a pure results of communication
efforts.

A very last observation concerns the similarity between semanti-
cally related words. Semantically related words are not necessarily
related in forms, and only in special cases, even if numerous, they
are. Nevertheless, an excess similarity between words used to name
related meanings do exists in natural languages and is statistically
relevant. A very interesting direction in order to compare models
outcomes with properties of natural languages is, for instance, that
of looking at word-associations experiments. In this experiments hu-
man beings are asked to write a word in response to another word
given as input. This simple task allows for the construction of the
so-called Word Association Graphs and many examples already ex-
ist [55]. A Word Association Graph represents a very good proxy
for the structure of a semantic network and an excellent test-bed for
grounding theoretical predictions.
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