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a  b  s  t  r  a  c  t

The  Category  Game  is  a multi-agent  model  that  accounts  for  the  emergence  of  shared  categorization
patterns  in  a  population  of  interacting  individuals.  In  the  framework  of  the  model,  linguistic  categories
appear  as  long  lived  consensus  states  that  are  constantly  reshaped  and  re-negotiated  by the  communicat-
ing individuals.  It is  therefore  crucial  to  investigate  the  long  time  behavior  to  gain  a  clear  understanding
of  the  dynamics.  However,  it turns  out that  the  evolution  of the  emerging  category  system  is  so  slow,
already  for small  populations,  that  such  an analysis  has  remained  so  far  impossible.  Here,  we  introduce
eywords:
ategory game
etastable states
o-rejection algorithms
gent-based simulation

a  fast no-rejection  algorithm  for  the  Category  Game  that  disentangles  the  physical  simulation  time  from
the CPU  time,  thus  opening  the  way  for thorough  analysis  of  the  model.  We  verify  that  the  new  algo-
rithm  is  equivalent  to  the  old  one  in terms  of  the  emerging  phenomenology  and  we  quantify  the  CPU
performances  of  the  two algorithms,  pointing  out the  neat  advantages  offered  by  the  no-rejection  one.
This technical  advance  has  already  opened  the  way  to new  investigations  of  the  model,  thus  helping  to

ental
shed  light  on  the  fundam

. Introduction

The Category Game (CG) is a computational model in which
 population of individuals co-evolve their own system of sym-
ols and meanings by playing elementary language games [1].  It
as been introduced to investigate how categorization can emerge

rom scratch in a group of individuals who interact in a pairwise
ay without any central coordination. The reference problem is

olor categorization, which is a central issue both in linguistics [2]
nd in cognitive science [3–5]. Color naming represents in fact a
undamental access point to human cognition, and at the same
ime provides important clues on language evolution. The evolu-
ion of English color categories constitutes an excellent example.
nglish color terms exhibited a gradual semantic shift from largely
rightness color concepts (Old English) to almost exclusively hue
oncepts (Middle English) [6].  The World Color Survey, moreover,
howed that color systems across language are not random [7,8],
ut rather exhibit certain statistical regularities, thus opening the
ay to a revolution in cognitive science [5,9].

The main point of interest of the CG is that it is able to

eproduce qualitatively and, most remarkably, quantitatively the
mpirical data gathered in the World Color Survey [10]. Kay
nd Berlin [7] ran a first survey on 20 languages in 1969. From

∗ Corresponding author.
E-mail address: fra trig@yahoo.it (F. Tria).

877-7503/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.jocs.2011.10.002
 issue  of  categorization.
© 2011 Elsevier B.V. All rights reserved.

1976 to 1980, this unique and extensively studied database was
enlarged by the same researchers along with W.  Merrifield and
the data was made publicly available since 2003 on the website
http://www.icsi.berkeley.edu/wcs. These data concern the basic
color categories of 110 languages without written forms and spo-
ken in small-scale, non-industrialized societies. On average, 24
native speakers from each of this language were interviewed by
expert field linguists. Every informant was tasked to name each of
330 color chips produced by the Munsell Color Company that rep-
resent 40 gradations of hue and maximal saturation, plus 10 neutral
color chips (black-gray-white) at 10 levels of value. The chips were
presented in a predefined, fixed random order, to the informant
who  had to name each of these colors with primarily a “basic color
name” from her language (in English, “basic color names” would
correspond to words like “red”, “green”, “yellow”, “blue”, etc. for
more details see [7]).

The Category Game model differs from the other models defined
to address similar issues [11–18] in that it accounts for the cat-
egorization of a genuinely continuous perceptual channel and
it describes a categorization pattern as a continuously evolving
metastable state on which the population shares a temporary con-
sensus [1,19].  The latter characteristic is intriguing and underlies
the existence of a new framework to address the puzzling problem

of language change, which turns out to be at the same time pro-
pelled by the interaction among the speakers and impeded by the
need of these speakers to understand each other [19]. The presence
of this sort of frustration renders the dynamics of the model so slow

dx.doi.org/10.1016/j.jocs.2011.10.002
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
mailto:fra_trig@yahoo.it
http://www.icsi.berkeley.edu/wcs
dx.doi.org/10.1016/j.jocs.2011.10.002
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hat it has been so far impossible to investigate and quantify prop-
rly the details of the long time behavior, even for small population
izes.

Here we present a fast algorithm suitable for studying the CG
ynamics over large timescales and for moderately large popula-
ion sizes. The algorithm is, in spirit, similar to those suggested
or accelerating Monte Carlo simulations (see [20,21] and also [22]
or other examples), where the key ingredient is to avoid rejec-
ion steps (hence the “no-rejection” tag in the title). Of course,
owever, the dynamics we are referring to is substantially differ-
nt, so new methods had to be developed in order to tackle the
pecific aspects of the model under consideration. In general, this
rea of research has gained immense popularity over the past few
ears and as a consequence the new field of computational science
ame into existence [23–25].  The rest of the paper is organized
s follows. In Section 2, we outline a detailed description of the
G model. The next section presents the fast algorithm suitable
or investigating the long-time CG dynamics. Section 4 compares
he outcomes of the fast algorithm with the original one, show-
ng excellent qualitative as well as quantitative agreement. In this
ontext, a detailed investigation of a set of relevant observables
s also performed, shedding new light on the “microscopic” origin
f the “macroscopic” behavior of the system. In Section 5 we show
he computational complexity of the proposed fast algorithm, com-
ared with the one of the original model. We  conclude in Section 6
y summarizing our contributions and pointing to possible future
pplications of this method.

. The Category Game model

The Category Game model [1] is crafted to examine how a
opulation of interacting individuals can develop through a series
f language games [26] a shared form-meaning repertoire from
cratch without any pre-existing categorization. We  consider a
opulation of N artificial agents each of them having, without any

oss of generality, a one-dimensional continuous perceptual space
panning the [0, 1) interval. A categorization can be identified as

 partition of this space into discrete sub-intervals which we  shall
enote from now onwards as perceptual categories. Each agent has

 dynamical inventory of associations linking the perceptual cate-
ories (meanings) to words (forms) that are used to name each of
hese categories. The perceptual categories as well as the words
ssociated to them co-evolve over time through a series of simple
ommunication interactions among the agents (or “games”).

In each game, two individuals are randomly selected from the
opulation and one of them is assigned the role of a speaker while
he other the role of a hearer. Both the speaker and hearer are pre-
ented with a scene of M ≥ 21 stimuli (objects) where each stimulus
orresponds to a real number in the [0, 1) interval. By definition, no
wo stimuli appearing in the same scene can be at a distance closer
han dmin which is the only parameter of the model encoding the
nite resolution power of any perception, for instance, the human

ust Noticeable Difference (JND). In psychophysics, JND is defined
s the minimum amount by which the stimulus intensity must
e changed in order to produce a noticeable variation in sensory
xperience [27].

One of the objects is the topic of the communication. The task
f the speaker is to communicate this to the hearer using the fol-

owing prescription. The speaker utters a word associated with the
opic while the hearer tries to guess its meaning from the word
he “listened”. The speaker always checks whether the topic is the
nique stimulus to lie in a specific perceptual category among all

1 Without any loss of generality in all our simulations we shall use M = 2.
al Science 2 (2011) 316– 323 317

the presented stimuli. If it is not, i.e., if the two stimuli collide on the
same perceptual category, then a new boundary is created in the
perceptual space at a location corresponding to the middle of the
segment connecting the two  stimuli. A new word is invented for
each of the resultant two  new categories. In addition, both of them
inherit all the words corresponding to the old category. This pro-
cess is termed as discrimination.  Subsequently, the speaker utters
the “most relevant” name for the category corresponding to the
topic where the most relevant name is either the one used in a
previous successful communication or the newly invented name in
case the category has just been created due to a discrimination. For
the hearer, there can be the following possibilities: (a) the hearer
does not have any category containing an object and associated
with the name, in which case the game is a failure, (b) there are one
or more categories associated with this name and containing an
object in the hearer’s inventory. In this case, the hearer randomly
chooses one of them. If the category chosen corresponds to that of
the topic, the game is a success, otherwise it is a failure.

Depending on the outcome of the game one or both the agents
update their repertoires. In case of a failure, the hearer adds the
word in her repertoire linked to the category corresponding to the
topic (eventually discriminating it). In case of success, this word
becomes the most relevant name for the category corresponding
to the topic for both agents and they remove all other competing
words from their respective repertoires linked with this category.
Note that if both the speaker and the hearer already have only the
successful word in the corresponding category, the inventory of
both of them remains unaltered after the game. This situation, as
already mentioned in the introduction, corresponds to a rejection
step of the Monte Carlo algorithm. The time t of the dynamics is
simply measured as the number of games played by the agents.

All the agents start without perceptual categories and without
category labels. During the dynamics, discrimination creates finer
and finer boundaries (“perceptual categories”) and produce more
and more category labels, unsuccessful games spread such labels
through the population, and successful games reduce the dictio-
naries associated to the categories to single winning words shared
by at least two players. Quite rapidly the N agents develop a fine
structure of perceptual categories represented by one or two words,
shared by the population. But there is also another fundamental
phenomenon which occurs unexpectedly in the dynamics: nearby
perceptual categories (after a lucky sequence of games) may  share
the same category label. In this way, a spontaneous competition
of labels arises, to conquer larger and larger groups of adjacent
perceptual categories. These groups are what we  call “linguistic
categories”.

In summary, the CG dynamics results in the emergence of a hier-
archical category structure comprising two  distinct levels: a basic
layer, responsible for the fine discrimination of the perceptual space
(i.e., the perceptual categories), and a second shared linguistic layer
that groups together perceptions having the same name to guaran-
tee communicative success (linguistic categories). Note that while
the number of perceptual categories is tuned by a parameter of the
model and can be very large (of the order of 1/dmin), the number of
linguistic categories turns out to be finite and small, as observed in
natural languages (see Fig. 2). On an extremely much larger time-
scale, however, tiny variations of categories and labels may  occur,
and eventually these linguistic categories may  merge. This long
time dynamics is something very interesting but extremely slow
to be investigated.
3. A fast algorithm for the Category Game

The primary goal of developing a fast algorithm is to study
the long time dynamics of the model. In the original algorithm
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ccessing such long timescales would be extremely costly because
f the freezing of the dynamics into metastable states. In particu-
ar, there would be many games in which the two agents (i.e., the
peaker and the hearer) would end up making no changes in the
onfiguration of their respective inventories. The time would then
ncrease by one time step. The basic idea behind the current version
f the algorithm is to impose that each game produces an outcome,
.e., a change in one or both the inventories of the two agents that
re playing. In this case, the time t has to be properly rescaled to
ecover the frozen dynamics. Furthermore, the correct statistical
requency of the different games (the playing order of the pairs and
he probability to play in a given region) has to be reproduced in
he no-rejection version of the model. In order to do so, we  need
o calculate both the probability that a game produces an outcome
nd the individual probabilities of each possible way in which the
utcome can be obtained.

In particular, the main steps of the fast algorithm are the follow-
ng (see also Algorithm 1 for the pseudocode):

hoosing the pair of players:  this is the most important part of
the algorithm since one has to choose a pair such that
their game will produce an outcome. Let us define pout(i,
j) = pout(j, i) as the probability that a game between the
two players will produce an outcome. We  shall shortly
describe the detailed method for computing this prob-
ability. For the time being, let us say that each of the
N(N −1)/2 possible pairs will be extracted according to
this probability2.

hoosing the region for placing the topic: once the pair of players
has been chosen, we impose that the game will produce
an outcome. As we shall see below, an outcome can fol-
low if the topic falls either in a mismatch region or in
a soft match one (both of these terms will be defined
shortly). Subsequently, we need to choose the region to
place the topic proportional to the corresponding proba-
bilities pMIS

out (i, j) (for the mismatch region) and pSOFT
out (i, j)

(for the soft match region)3.
ame: the game is performed in the selected region with the

same rules as in the original CG algorithm summarized in
Section 2.

escaling time: at the end of each game, time is increased by a
factor 1/pout(i, j).

Note that, of course, each probability is also a function of time as
hown in Figs. 5(a) and 7; however, we have not explicitly included

 in all the variables to indicate this dependence so as to keep the
otations as simple as possible. We  shall maintain this implicit form

rom now onwards throughout the rest of the paper.

.1. Extracting the no-rejection regions
In order to calculate the probabilities of interest, we introduce
he following definitions: (i) a match region for the two  playing

2 The actual probability with which each couple is extracted reads: pout(i,
)/
∑

i′<j′pout(i ′ , j ′).
3 Note that pMIS

out (i, j) + pSOFT
out (i, j) = pout(i, j). If we  want to consider the conditional

robabilities of having a game in a soft match region or in a mismatch region given
hat the game has an outcome, we have to divide the above defined probabilities by
out(i, j).

pa
SOFT =

∫ xmin
r

Xmax
dy

∫ y−dmin

xmin
l

dz +
∫ Xmin

xmax
l

dy

∫ xmax
r

y+dmin

dz

= (xmin
r )2 − (Xmax)2

2
− (xmin

r − Xmax)(xmin
l + dmin) −
al Science 2 (2011) 316– 323

agents is a region where both the agents have the corresponding
linguistic category settled (i.e., with only one label) and a unique
label for it; (ii) a mismatch region is any interval in [0, 1) that is not
a match region. Note that since the match and mismatch between a
pair of agents is symmetric and since all our probability calculations
are based on these two  values, it is obvious that pout(i, j) = pout(j, i).

Let us now consider a game where a speaker-hearer pair and
two  stimuli are selected4. Of course, if the topic falls in a mismatch
region an outcome is guaranteed. If the topic falls instead in a match
region, the situation is more tricky. In this latter event, two cases are
possible: either there is the necessity to discriminate (see Section
2) for one or both the agents, in which case the game produces
an outcome, or the repertoire of both the speaker and the hearer
remains unchanged (the outcome is null). To distinguish between
these two  events, let us refine the definition of a match region in the
following way: we  will denote a match region to be a strict match
region if the lengths of the corresponding perceptual categories of
both the speaker and the hearer are shorter than dmin. In this case
no discrimination is possible, due to the finite resolution constraint,
and the outcome of the game will be surely null. A match that is not
strict shall be called a soft match.

3.1.1. Probability of playing in a soft match region
Since the soft match definition is based on the length of the

underlying perceptual categories, it is natural to express the prob-
ability of having a game in that region as the sum of the probabilities
of having a game in each of the underlying perceptual categories:

pSOFT
out =

∑
a

pSOFT
a , (1)

where the sum is over all the perceptual categories spanning the
soft match region and we assume the dependence on the agents i,
j to be implicit.

Thus, we have to calculate the probability that both the topic
and the object fall in the perceptual category a which belongs to
a soft perceptual match region and the game produces an out-
come. Two  events have to be considered simultaneously: (a) the
topic falls in the match region, and (b) the object falls in the
union5 of the two perceptual categories under consideration (i.e.,
of the speaker and the hearer) so as to produce a discrimina-
tion and, thereby, an outcome. As we recall from the above, the
two  events considered here are not independent but correlated
through dmin. Consequently, we  need to integrate all the differ-
ent possibilities of placing the topic and the object maintaining
this correlation. In order to write the correct expression, we define
xS

l,r
as the left and the right boundary, respectively, of the con-

sidered perceptual category of the speaker, and correspondingly
for the hearer. Further, xmin

l,r
= min(xS

l,r
, xH

l,r
), xmax

l,r
= max(xS

l,r
, xH

l,r
),

Xmax = max(xmax
l

, xmin
l
+ dmin) and Xmin = min(xmin

r , xmax
r − dmin).

An example illustrating the above terms is shown in Fig. 1. We
finally obtain:
(Xmin)2 − (xmax
l

)2

2
+ (Xmin − xmax

l )(xmax
r − dmin).

(2)

4 Without any loss of generality we  shall consider from now onwards the first
stimulus as being the topic of the game.

5 The union is the region in [0, 1) that belongs either to the perceptual category
of the speaker or of the hearer.
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Fig. 1. An example to illustrate the different terms for computing pSOFT
a . Accord-

ing to this figure, (a) xmin
l
= min(xS

l
, xH

l
) = xH

l
, (b) xmin

r = min(xS
r , xH

r ) = xH
r , (c) xmax

l
=

max(xS
l
, xH

l
) = xS

l
, (d) xmax

r = max(xS
r , xH

r ) = xS
r , (e) Xmax = max(xS

l
, xH

l
+ dmin) = xS

l

(taking into account the length of dmin shown in the figure), and (f) Xmin =
m
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Fig. 2. Perceptual and linguistic categories obtained from the old and the new algo-
in(xH
r , xS

r − dmin) = xH
r (taking into account the length of dmin shown in the figure).

.1.2. Probability of playing in a mismatch region
In order to obtain the probability of playing in a mismatch

egion, we have to consider once again the correlation due to the
inimal distance dmin in the extraction of the topic and the object.

he probability of producing an outcome by means of a game in a
ismatch region equals the probability that the topic falls in there.

n order to calculate this probability, we must distinguish the case in
hich the first extracted object is the topic from the case it is not. In

he first case, where the topic is the first extracted object, the prob-
bility that it falls in a mismatch region is simply the length of that
egion. In the second case, where the topic is the second extracted
bject, we have to consider the fact that it should be chosen at least
min far apart from the first object. This can be done in a similar
ay as described in the previous subsection for the calculation of

he probability of playing in a soft match region and we  shall call
his probability. Since the first and second case occur with equal
robability in the original model, we can write:

MIS
a = 1

2
(pa

MIS
first + pa

MIS
second) (3)

MIS
out =

∑
a

pMIS
a , (4)

here the sum is over all the perceptual categories spanning the
ismatch region.

. Comparison of the observables from the two algorithms

In this section, we show that this no-rejection version of the CG
lgorithm features the same dynamical properties of the original
ne. We  consider all the relevant observables reported in [1] as well
s new microscopic observables analyzed here for the first time.
.1. “Macroscopic” observables

Here we look at (a) the average number of perceptual (nperc)
nd linguistic categories (nling) per individual, (b) the success rate
nd (c) the perceptual and linguistic overlap across the population
s functions of time for the two models (original and fast) we are
omparing. We  show simulations for different population sizes and

 fixed dmin = 0.0143 which is equal to the average human JND [10].
rithm for N = 25, 50 and 100. Solid lines show results obtained from the old algorithm
while broken lines indicate results obtained from the new algorithm. All the results
are averaged over 30 samples.

Algorithm 1. A fast algorithm for the Category Game
Require: N, dmin

1: loop
2: extract a pair of individuals (i, j) form the population

with a probability pout(i, j);
3:  choose the region to place the topic proportional to

the probabilities pMIS
out (i, j) (for the mismatch region)

and pSOFT
out (i, j) (for the soft match region);

4: if the topic and the object collide on a single
perceptual category then

5: discriminate by (i) adding a new boundary in the
perceptual space at a location corresponding to the
middle of the segment connecting the two stimuli, (ii)
inventing a new word for each of the resultant two
new categories and finally, (iii) adding all the words
corresponding to the old category to these two new
categories;

6:  end if
7: the speaker transmits to the hearer the most

relevant name of the category linked to the topic;
8: if  the hearer does not have any category associated

with the name then
9:  the game is a failure;

10: end if
11: if there are one or more categories associated with

this name in the hearer’s inventory then
12:  the hearer randomly chooses one of them (say c);
13:  if c corresponds to that of the topic then
14:  the game is a success;
15: else
16: the game is a failure;
17: end if
18: end if
19: if the game is a success then
20: both agents delete all of the words but the

transmitted one from the inventory of the category
discriminating the topic;

21:  els if the game is a failure then
22: the hearer adds the transmitted word to the

category discriminating the topic;
23: end if
24: t ← t + 1/pout(i, j).
25: end loop

Fig. 2 shows the average number of perceptual6 and linguistic

categories per individual obtained from the old and the new algo-
rithms respectively versus the number of games per player (i.e.,
t/N). It is apparent from this figure that the new algorithm is not only

6 The average number of perceptual categories remains same across different
population sizes as long as the value of dmin is fixed. Therefore we only show one
representative plot for the perceptual categories in Fig. 2.
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ble to reproduce the same phenomenology but also the outcomes
re very close to what is obtained from the old algorithm.

Fig. 3 compares the success rate for the two algorithms versus
/N. The success rate is measured as the fraction of successful games
ver sliding time windows. The figure clearly indicates that the
esults from the two algorithms match (almost) accurately.

The overlap function [1] measures the degree of alignment of the
ategory boundaries of two agents (i, j) and is defined as follows:
 = 2
N(N − 1)

∑
i<j

Oij with Oij =
2
∑

cj
i

(l
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i

)2

∑
ci

(lci
)2 +

∑
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where lc is the width of the category c, ci is one of the categories of
the ith agent and cj

i
is the generic category of the intersection set

containing all of the boundaries of the agents i and j. The function Oij
returns a value proportional to the degree of alignment of the two
category inventories reaching its maximum unitary value when
they are perfectly aligned. The linguistic overlap is defined as in Eq.
5; however, only considering the boundaries between categories

with different most relevant names.

Fig. 4 shows the perceptual and linguistic overlap obtained from
the old and the new algorithm versus t/N. Once again there is an
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he  main figure.

xcellent agreement between the results obtained from the two
lgorithms.

.2. “Microscopic” observables

As pointed out in the previous sections, one of the main ingre-
ients of the fast algorithm is the computation of the probability
hat at each time step a game between a randomly chosen pair of
layers together with a randomly selected topic in the interval [0, 1)
ould produce a non-null outcome. Here we compare the behavior

f the original and the fast algorithm with respect to this property.
n particular, in Fig. 5(a) we show for the original algorithm the
raction of games, collected in time sliding windows, that produce

 non-null outcome, while for the no-rejection algorithm the prob-
bility pout(i, j) of the selected pair (i, j) averaged over the same time
indows. In the inset, we also show the (representative) histogram

f pout for each possible pair of agents at three different points in
ime for a specific population size. It is evident that the histogram
s strongly peaked, which means that pout(i, j) is roughly similar for
ll pairs (i, j) thereby, allowing for an effective random choice over
he pairs without altering the dynamics.

Subsequently, in Fig. 5(b)–(d) we respectively compare the two
lgorithms in terms of the fraction of games, collected in time slid-
ng windows, which ended up being played in a mismatch region,
r in a match region, or where a discrimination process occurred.
nce again, the results exhibit a remarkable qualitative as well as
uantitative agreement.

. Comparison of the computational complexity of the two
lgorithms

In this section, we compare the computational complexity of
he two algorithms, i.e., we compare the computer time7 (tc) in
econds required to complete a specific number of games per

layer for the old and the new algorithms. In addition, we  give
ore extensive results for the computational complexity of the

ast algorithm. It is important to note that the primary focus of

7 We use the in-built clock() function of the GNU C library to estimate the value
f  tc .
al Science 2 (2011) 316– 323 321

the analysis that follows is to understand the relative advance-
ment in the time performance of the fast algorithm rather than its
absolute performance (similar in lines to [21]). Indeed, the develop-
ment of this algorithm has allowed for the investigation of certain
novel and interesting characteristics of the model like metastabil-
ity and aging [19] which was earlier impossible even for small
population sizes. All our results are obtained on the ISI cluster
with the following node specification: (a) Processor—INTEL XEON
E5405 2.00 GHz, (b) cache—6144 kB, (c) ISA: 64-bit and (d) RAM—
8 GB.

Fig. 6 compares the computer time required to complete a spe-
cific number of games per player by the old and the new algorithm.
Note that during the initial games the old algorithm takes lesser
computer time than the new one. During this phase, almost all
games produce an outcome and therefore the additional calculation
of the probabilities required for the fast algorithm is not advanta-
geous. However, as soon as the dynamics gets trapped in metastable
states (at the onset of the plateau region in the number of linguis-
tic categories curve in Fig. 2) the calculation of the probabilities
turns out to be very advantageous and the new algorithm has a
much higher velocity than the old one. Note that for larger pop-
ulation sizes (N = 200 and 400) we could manage to reach only a
lower value of t/N within a reasonable tc for the old algorithm. In
the inset of Fig. 6 the ratio of the two algorithms’ execution time
is shown, to better appreciate the advantage of the no-rejection
one.

In Fig. 7(a), we  present a further analysis of the scaling of tc with
the population size for the no-rejection algorithm. In particular,
we report two  different quantities in this figure for N = 200, 400
and 800:

(i) pout versus the rescaled number of games. Note that one needs
to rescale t by N3/2 to collapse the curves. This dependence of
the time of the dynamics on the population size has also been
recovered in several other cases elsewhere [19,28] and usually
indicates the time scaling to reach a consensus in the popula-
tion. Clearly, the rate at which the values of pout drop decreases
with increasing t.

(ii) the rescaled tc versus the rescaled number of games (i.e., t/N3/2

as in case (i)). In order to collapse these curves, especially in
the “large” t regime (featuring the long-time dynamics) one
has to rescale tc by t

√
N. In addition the entire factor is mul-

tiplied by a large constant A (∼2 × 107) in order to present a
better visualization of the plots within the same figure as of
pout.

The most important observation is that the long-time behavior
is exactly similar to that of pout which indicates that the com-
puter time required is largely determined by the probability of
outcomes.

In Fig. 7(b) we show the amount of tc required to complete
t = 5 × 107, 5 × 108 steps for the old and the new algorithm for dif-
ferent population sizes. In all the four cases, the curves can be nicely
fitted using a function of the form: f (N) = ˇ

√
N. For the old algo-

rithm  ̌ = 8.25 and 104.92 while for the new algorithm  ̌ = 2.16 and
34.66 respectively for t = 5 × 107 and t = 5 × 108. This observation
once again confirms the dependence: tc ∝

√
N. An important point

to note is that the pre-factor  ̌ is significantly lower for the new
algorithm as compared to the old one. The dependence of tc on

√
N

can be attributed to the time required by the different processes of
the model (e.g., discrimination, inventory updates, etc.). A detailed
analysis of this dependence is out of the scope of the current paper
and shall be presented elsewhere.
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equired to complete t = 5 × 107, 5 × 108 steps for the old (continuous lines) and the

. Conclusion

In this paper we have introduced a no-rejection algorithm devel-
ped to study the long time behavior of the Category Game model.
he original model [1] approaches one of the most important
roblems in linguistics – the emergence of linguistic categories –
nd was shown to reproduce both qualitatively and quantitatively
xperimental results reported in the WCS  [10]. The two  main inno-
ative aspects of the model, with respect to previously proposed
nes, are (i) the dynamical emergence of a discretization from

 continuous perceptual space and (ii) the representation of the
resent category system as a long lasting metastable state rather
hen an attractor of the dynamics. The last property has triggered
he need for suitable methods to achieve the long time dynam-
cs of the model. In particular, the observed dynamics was  such
hat games which bring a modification of the state of the agents
esulted progressively more rare. The analysis of the behavior of the
ystem for suitably large time and population sizes was  for that rea-
on practically impossible. The no-rejection algorithm presented
ere has been crucial to access the long time dynamical properties
f CG, characterized by metastability and aging [19], and thus to
hed light on so far unexplored part of the model, helping to clarify
he nature of the consensus states that are established during the
G dynamics, with important consequences for the understanding
f such phenomena as language change and language evolution.
he no-rejection model we propose, despite being ad hoc for the
G, presents principles and methods that can be generalized for
ifferent other models related to the evolution and emergence
f language or similar semiotic phenomena all of which employ
ulti-agent simulation techniques. This, as a result, can trigger

omputationally less expensive methods suitable to investigate
ocial phenomena.
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