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Abstract. Opinion dynamics concerns social processes through which populations or

groups of individuals agree or disagree on specific issues. As such, modelling opinion

dynamics represents an important research area that has been progressively acquiring

relevance in many different domains. Existing approaches have mostly represented

opinions through discrete binary or continuous variables by exploring a whole panoply

of cases: e.g. independence, noise, external effects, multiple issues. In most of

these cases the crucial ingredient is an attractive dynamics through which similar or

similar enough agents get closer. Only rarely the possibility of explicit disagreement

has been taken into account (i.e., the possibility for a repulsive interaction among

individuals’ opinions), and mostly for discrete or 1-dimensional opinions, through

the introduction of additional model parameters. Here we introduce a new model

of opinion formation, which focuses on the interplay between the possibility of explicit

disagreement, modulated in a self-consistent way by the existing opinions’ overlaps, and

the effect of external information on the system. Opinions are modelled as a vector of

continuous variables related to multiple possible choices for an issue. Information

can be modulated to account for promoting multiple possible choices. Numerical

results show that extreme information results in segregation and has a limited effect

on the population, while milder messages have better success and a cohesion effect.

Additionally, the initial condition plays an important role, with the population forming

one or multiple clusters based on the initial average similarity between individuals, with

a transition point depending on the number of opinion choices.

PACS numbers:
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1. Introduction

Opinion formation is an important property of social systems. People are driven by

their choices in many moments of their lives, based on opinions formed in time under

the influence of many factors, such as their own personality, the culture they belong to,

peer interaction, mass-media effects, etc. These choices range from selecting a lifestyle,

a specific behaviour, a phone company, or a supermarket, to the city to leave in or

whom to vote for. The way opinions form and choices are made is of interest to many

classes of researchers, with implications in many fields from politics to economics, to

marketing. Probably the most immediate example is represented by political opinions:

here the question is how people synthesize the different sources of information and

biases, to come up with a specific position to be eventually expressed as a vote whenever

required. Another important example concerns marketing strategies. These strategies

are typically devised using social research, under the assumption that in order to

attract clients, the products have to be presented in an appealing way. An example

is described in [1], where a supermarket chain, after careful analysis of the purchases of

their clients, send customised promotional leaflets. By sending early advertising about

products people need, they attract them before other chains, and increase sales also

in departments other than that advertised. For a different client type, the advertising

looks different, even though the supermarket is the same. This is one classical example

of shaping external information and advertising in such a way as to attract as many

individuals as possible. Yet another example is the decision to buy a specific product

in a market segment, e.g. a mobile phone, a car, a book, etc. It is again a matter of

opinion formation and evolution, based on an evaluation of how the product matches the

needs, attitude and possibilities of an individual. For instance, while until a few years

ago, the smart phone market was very narrow, nowadays it has extended significantly

[2]. It would be interesting to know what changes people’s opinion, and leads to a large

propagation of a new technology.

Traditionally studied by sociologists, opinion formation has become an important

topic for physicists and different classes of models have been investigated in the past

years [3]. Models with opinions or options modelled through discrete variables, such

as the voter, local majority rule [4], Sznajd [5], Axelrod [6], social impact [7, 8, 9]

and their various extensions, have been applied to explain aspects of elections, strikes,

dynamics of mobile market, privately own companies, financial crises and culture

formation [10, 11, 12, 13]. Although discrete variables are very suitable for modelling

choices, the internal state of individuals, based on which discrete decisions are taken,

may be continuous. Also, the opinion itself could take continuous values. The

Deffuant-Weisbuch [14, 15] and Hegselmann-Krause [16] models analyse one-dimensional

continuous opinions, while multiple dimensions are analysed in [17], where the opinion

space is the unit simplex. The Continuous Opinions and Discrete Actions approach

(CODA) [18] analyses internal probabilities for two or three discrete choices. Most of the

original models deal with attractive dynamics, where individuals follow their neighbours.
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However, in reality, both attractive and repulsive interactions can be observed, and it

has been argued that disagreement is a very important feature of a democratic society

[19]. This element has been introduced in some of the existing models, by considering

additional model parameters to control disagreement (e.g. [20, 21, 22, 23, 24, 25, 26, 27]).

Additionally, the effect of external information is crucial when modelling real social

systems. Again, some approaches consider this effect [28, 29, 30, 21, 31, 32]. However,

an analysis for multi-dimensional continuous opinions is missing, both for external

information and disagreement.

Here, the interplay between disagreement and external information in opinion

dynamics is analysed, by the introduction of a new modelling approach. The model

considers the probabilities that an individual will make a specific choice out of multiple

possibilities (such as voting or choosing a market product). It includes both attractive

and repulsive interactions, in a self consistent way, without the addition of a further

parameter to the model. Modulated information is also possible, which promotes

multiple choices at the same time. Additionally, an analysis of the effect of the initial

condition is performed.

2. Methods

A fully connected social network of N individuals is considered, where each agent has

to make a choice between K possible opinions on a given subject. Each individual

maintains a set of probabilities for the possibilities: ~x = [p1, p2, . . . , pK ] with
∑K
k=1 pk = 1

i.e., an element in the simplex in K − 1 dimensions. We define the similarity between

two individuals ~x i and ~x j as the cosine overlap between the two opinion vectors:

oij =
~x i · ~x j

|~x i||~x j|
=

∑K
k=1 p

i
kp
j
k√∑K

k=1 (pik)
2
∑K
k=1 (pjk)

2
(1)

At each time step a randomly selected pair of individuals, (~x i,~x j), interacts, either by

agreeing or disagreeing, based on their instantaneous overlap:

pijagree = oij ± ε (2)

pijdisagree = 1− pijagree (3)

This corresponds to imagine that, during the interaction, each individual perceives how

close (or distant) he/she is from another individual and consistently agrees or disagrees.

Here, ε is a noise term which avoids lack of interaction due to null overlap. It is important

to note here that our model does not impose “bounded confidence”: individuals with

low overlap will tend to disagree, with an effect on their state, and it is however possible

that two individuals agree even though their overlap is null (with low probability).

Furthermore, the model introduces the possibility of both agreeing and disagreeing in

a self consistent way. Interaction causes one of the individuals in the pair to change a
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random element l in the opinion vector:

pil(t+ 1) =


pil(t)± α sign(pjl − pil), if |pjl − pil| > α

pil(t)±
1

2
(pjl − p

j
l ), otherwise.

(4)

where the plus sign occurs when the interaction results in agreement and the minus sign

when the interaction results in disagreement. Hence, the position is changed by α > 0

a small fixed step, unless differences to the other individual are too small, in which case

the change is half the difference. This allows complete agreement between individuals.

The parameter α determines the flexibility of agents since it fixes the time scale for

local agreement or disagreement. The larger α is, the faster the two individuals will

agree or get separated. The rest of the elements in ~x i are adjusted to preserve the unit

sum, by uniformly redistributing the amount the element l was changed by. Since 0

and 1 are absorbing values, this is performed iteratively. For instance, if we consider

that position l has been increased by α, the other positions would have to change by

− α
K−1 . In attempting to do this, some positions may become negative. In this case, the

negative positions will be set to 0, after being summed to obtain a new amount α′ for

redistribution. This new amount will be redistributed to all non-null positions (except

for l), with the procedure repeated until no negative position is obtained. This method

allows for the absolute value of the change on position l to be the same for agreement

and disagreement. Figure 1 demonstrates graphically the update rule employed.

External information, e.g. mass-media, is introduced as a static agent ~I =

[I1, I2, . . . , IK ] with:
∑K
k=1 Ik = 1. After interacting with a peer, an individual

interacts also with the information with probability pI , following the same interaction

rules. Hence, interacting with the external information does not imply less peer

communication. In previous models, external information biased individuals towards

one choice out of all possibilities (e.g. Axelrod, Sznajd). Here, this means setting one

position in ~I to 1 and others to 0. In reality, however, sources of information are so

wide that only one possibility is never promoted. Our approach has the ability to model

such complex influence, by choosing non zero values on more positions of ~I, i.e., a

modulated information. This was also true for the Deffuant model: if we consider that

the continuous opinion is actually a probability to make a choice between two discrete

options, then milder external information can be introduced by using information values

far from the extremes of the opinion interval. In fact, similarities between information

effects in the Deffuant model and the one introduced here will be discussed in a later

section.
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Figure 1. Example of pairwise interaction. We consider a generic interaction

between an individual A and an individual B, in a dynamics where the number of

possible opinions is fixed to K = 3. In particular, the individual A changes its

opinion according to its interaction with the individual B. We depict both the cases of

agreement (left) and disagreement (right). Left: The individual A changes its status

according to an agreement with individual B. In this case, the opinion they discuss

is the opinion l = 1, and its probability is decreased by the value α = 0.1 in the

individual A to become more similar to the individual B (and, as such, the mutual

overlap increases). The probabilities of the rest of the opinions are increased by equal

amounts (in this case, α2 ) to conserve the unity sum. Right: the same dynamics in case

of disagreement. In this case, the individual A increases the probability of opinion 1

by the amount α = 0.1, decreasing its overlap with the individual B. Equivalently, the

probabilities of the rest of the opinions are decreased by equal amounts to conserve

the unity sum.

3. Results

3.1. Role of the initial condition

An important parameter to take into account is the initial average overlap of the

population, defined as :

ō =
2
∑
i,j o

ij

N(N − 1)
. (5)

This value represents the probability that a randomly chosen pair of individuals will

follow agreement dynamics, so it may have a large influence on the final state of the

population. Thus, it is interesting to see how the dynamics depends on this feature

of the initial condition, and we perform this analysis when no external information is

present (pI = 0). A random sampling of the simplex in K − 1 dimensions yields a

population with a relatively large average overlap. In order to generate populations
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Figure 2. Initial conditions for K = 3 - distribution of opinion values for a population

of 300 individuals, with different average population overlap. The entropy threshold

values used to generate these populations are, from left to right, 1.2, 1.5 and 1.6.

with different initial ō, we consider the entropy S associated to the opinions probability,

defined as:

S = −
K∑
i=1

pi log2(pi) (6)

and we remove from the random sampling some individuals that have S larger than a

specific threshold. Specifically, we construct a population of N individual by random

sampling each individual from a simplex in K − 1 dimensions. In order to decrease the

population average overlap, we compute for each sampled individual its entropy S and

remove it from the population with probability 0.9 if S is above the chosen threshold.

We continue to sample points in the K − 1 simplex and to apply the above procedure

till we reach a population of the desired size N . Decreasing the threshold, populations

with decreasing ō can be obtained. Figure 2 shows the distribution of populations with

different ō for K = 3. Throughout the rest of this paper, more fragmented or compact

population will be generated in this manner, with the most compact initial condition

corresponding to the random sampling of the simplex.

In order to study the effect of the initial condition, we have performed numerical

simulations (N = 300, ε = 0.1, pI = 0) for different K ∈ {3, 5, 10, 20, 30}, with

corresponding α ∈ {0.0167, 0.01, 0.005, 0.0025, 0.00167}. Hierarchical clustering of the

final population has been performed, using complete linkage clustering [33], and cutting

the tree at 0.8 similarity level. This ensures that if two agents i and j are in the same

cluster then oij > 0.8. The effective number of clusters has been computed as the cluster

participation ratio (PR):

PR =

(∑C
i=1 ci

)2
∑C
i=1 c

2
i

(7)

with C the number of clusters and ci the size of cluster i. This measure is more significant

than the number of clusters itself, as it also considers cluster sizes. For instance, if the
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Figure 3. Effect of initial condition on the effective number of clusters in the final

population. Dots represent individual instances, while lines are averages. Simulations

have been performed with N = 300, ε = 0.1, pI = 0 for different K ∈ {3, 5, 10, 20, 30},
with corresponding α ∈ {0.0167, 0.01, 0.005, 0.0025, 0.00167}.

population consists of two clusters, PR would be 2 only if the clusters are equal in size,

and very close to 1 if one of the clusters is extremely small compared to the other.

Figure 3 displays PR values for different realizations of the model, depending on

the initial ō. This shows that the initial condition has a large effect on the final

population, with a transition in the number of clusters obtained. Specifically, above

a certain value of the initial overlap, the population forms one cluster, while below this

value the population divides into K clusters, each of the form (1,0,. . . ). The value of ō

marking the transition decreases with K, showing that agreement in the population is

facilitated by the existence of more opinion choices. This has also been observed for the

model in [17], although without performing an analysis of the initial condition effect.

However, it is important to note that in the case of agreement (and in the absence of

external information), agents maintain a probability different from zero for (almost) all

options, which means a generalised state of indecision (see for instance the first column

of figure 10 (or equivalently 11). On the other hand, when clusters form, these adopt a

more decided option with pl = 0 for many values of l (see for instance the first column

of figure 8 (or equivalently of figure 9)).
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3.2. Effect of information

We now analyse the effect of external information on the final state of the population.

Numerical simulations have been performed for N = 300 K = 5, α = 0.01, ε = 0.1 and

pI ranging from 0 to 1. Four types of information have been investigated, in order to

study the effect of extreme and mild external messages on the population (specifically
~I ∈ {[1, 0, 0, 0, 0], [0.8, 0.2, 0, 0, 0], [0.4, 0.2, 0.2, 0.1, 0.1], [0.2, 0.2, 0.2, 0.2, 0.2]}). Since,

as shown in section 3.1, the initial condition plays a very important role in the

number of clusters obtained, four different initial conditions have been used, with

ō ∈ {0.49, 0.55, 0.57, 0.62}. These values cover situations before, around and after the

transition occurs (Figure 3), with ō = 0.62 corresponding to the random sampling of

the simplex.

The effective number of clusters has been determined as in the previous section,

using the PR measure. The effect of information has been quantified by computing the

average information overlap (IO) when the population has reached a stationary state:

IO =
1

N

N∑
i=1

oIi (8)

where oIi represents the cosine overlap between agent ~x i and the external information ~I.

This average measure is an indicator of the percentage of individuals in the population

adhering to the information.

Figure 4 displays IO and the effective cluster number PR for the different parameter

configurations, each point being an average over 20 realizations of the process. Several

patterns can be observed. In general, extreme information is less successful in the

population compared to milder messages, as IO values indicate. Additionally, mild

information favours cohesion in the population, i.e., a decreased number of clusters

compared to the pI = 0 situation, while extreme information induces segregation

(increased PR). These effects increase with pI . Of course, the extent of the two effects

observed depends on the initial condition. That is, the segregation effect of extreme

information is small when the population starts from a tight community, i.e., large ō,

with the number of clusters increasing when ō decreases. Similarly, the success of mild

information is smaller when the initial population is not very compact and larger in the

opposite case.

Several other interesting details can be observed. In general, even when the

frequency of interaction with the external information (pI) is very large, the success

in the population (IO) is bounded. This bound depends both on the initial condition

and on the type of information, with a smaller value for extreme information and low

initial ō, and virtually no bound for mild information and large ō. This is due to

the disagreement dynamics based on the overlap between individuals and the external

information, and is observable also in real life, where no matter how much propaganda

there is, if the individuals do not agree enough with an idea, this is not adhered to.

To analyse in more detail the clustering patterns obtained, Figure 5 displays

histograms of cluster sizes obtained in 20 runs, for pI ∈ {0, 0.01, 0.5}. This shows that,
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Figure 4. Numerical results for a population of 300 individuals, K = 5, ε = 0.1

and α = 0.01 are presented (100000 population updates (refer to figure 15 for the

time needed for a population of size N to reach a stationary state), 20 instances for

each parameter value). Four different information values are used, corresponding to

each column. The top graphs show the histogram of the information, the middle

the average number of clusters as a function of pI while the bottom the average

information overlap again as a function of pI . The individual points correspond to

pI ∈ {0, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}. Error bars are displayed as

well, showing standard deviation for each point. Where error bars are not visible, the

standard deviation is within graphic point limits or null.

in general, as expected, PR values of 5 correspond to clusters of similar size (around

60 individuals), while PR values close to 1 are generated by one very large cluster and

one or several extremely small groups. The figure shows very clearly how the fraction

of very large cluster sizes increases as the initial condition becomes more compact (red

to blue lines) and as the information becomes milder (left to right columns).

Another very interesting phenomenon can be observed for compact initial

conditions, i.e., random sampling of the simplex (Figures 4 and 5, blue lines). When

the information is not too extreme ~I = [0.8, 0.2, 0, 0, 0], the entire population adheres

to it provided pI is very small, while as pI increases, the media success decreases. On

the other hand, when the information is very peaked (~I = [1, 0, 0, 0, 0]), very small pI
leads to complete disagreement to the population, while larger pI increases agreement.

Cluster sizes, however, do not show a large change when increasing pI from 0 to 0.01,

showing that group composition is basically the same, even though IO values change
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Figure 5. Histograms of cluster sizes obtained over 20 simulations runs for K = 5,

N = 300, ε = 0.1 and α = 0.01. Four information types and four initial conditions are

displayed, for pI ∈ {0, 0.01, 0.5}.

significantly. This indicates that a very low pI allows for the dynamics to proceed in a

similar manner as without information, and after groupings are formed, these are slowly

swayed towards or away from the information. In the specific case here, a compact initial

population forms first one cluster, which moves close to the information if this is mild,

or far from it if peaked. This shows that, when facing a compact group, an external

message is more efficient if presented gradually, provided it is not extremely different

from the current convictions of the population. This suggests that peer influence is

more effective than that from an external static source. This can be explained by the

fact that peers are flexible, and move towards others freely, while external information

is too rigid. An agent that is facing an external message which she does not agree

with, will move away from it, while when the direct exposure to the external message

is small, the interaction with other peers can sway her towards accepting the message.

However, for this to happen, the message has to be close enough to the initial state of

the population, i.e., acceptable by a large number of individuals. When this is not true,

as is the case with an extreme external information, the entire population will disagree

with the message, and the media campaign will have no effect.

It is important to note that the overlap of the external information with the

population, which, as our results show, is one of the most important determinant for the

success of a campaign, depends also on K. For instance, an extreme message [1, 0, . . .]

has an average overlap with a random population of 0.447 when K = 5 and 0.577 for

K = 3. Figure 6 shows average overlap with the information obtained for different K

values. Each initial population has been obtained by random sampling of the simplex,
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Figure 6. Average information overlap for compact populations of 300 individuals,

K ∈ {3, 5, 10, 20, 30}, ε = 0.1 and α ∈ {0.0167, 0.01, 0.005, 0.0025, 0.00167}
(10 instances for each parameter value). Error bars show one standard

deviation from the plotted mean. The individual points correspond to pI ∈
{0, 0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 1}.

being thus a compact population. Three information types have been used. It is obvious

that the three types of information have a very different effect depending on K. While

for K = 3, information [0.5, 0.3, 0.2] is very mild, having complete success, for K = 30

[0.5, 0.3, 0.2, 0, . . . , 0] would be quite extreme, since only three out of thirty options are

promoted, so the information overlap obtained decreases drastically. We can conclude

that the success of all three information types in the population decreases with K. This

indicates that it is easier to convince the public about a specific option when there are

few choices, compared to when the number of choices is large. When pI is small, the

phenomenon explained in the previous paragraph can be observed, for all K, i.e., mild

information has complete success, while extreme information fails to attract individuals.

3.3. Robustness with respect to the choice of α

The role of the value of the parameter α is analysed to identify the effect of changing

agent flexibility. In figure 7 we report the effective number of clusters PR resulting from

simulations with different values of the flexibility α, for K = 5. The same dependence

of the results on the initial condition observed in Section 3.1 is conserved as long as α

is small enough (α < 0.05 in simulations with K = 5), whereas when α is too large

(α > 0.1), the population converges to one cluster, regardless of the initial condition

chosen. These results show that the model is robust with respect to α, as long as the

change in opinion is not forced to be very large, which is what is expected. A very large

α favours agreement in the population, since individuals that are very different can

become very close on a single interaction, while for similar individuals which disagree,

the change is not as drastic, since the difference between their opinions is very likely to
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Figure 7. Effective number of clusters obtained for different initial conditions and α

values for K = 5.

be smaller than α (and hence use the second rule in equation 4). It is important to note

that below a certain value, decreasing the parameter further (thus increasing simulation

times) is not necessary, since results are very similar.

3.3.1. Temporal patterns In order to get a further insight on the dynamics of the

system, this section discusses temporal patterns for two initial conditions (ō = 0.49 and

ō = 0.62) and two information types (~I = [1, 0, 0, 0, 0] and ~I = [0.4, 0.2, 0.2, 0.1, 0.1]),

each for pI ∈ {0, 0.01, 0.5} and K = 5. Figures 8, 9, 10 and 11 show single simulation

instances for each pI . Plots display the evolution in time of each of the five elements

of the opinion, for every individual in a population of 300. Each row corresponds to

one position pi in the opinion vector, while each column represents a different value of

pI . The value of the information is shown in red. Individual opinions are displayed in

colours corresponding to the cluster they belong to at the end of the simulation (e.g. all

green lines correspond to individuals which cluster together). The relative cluster sizes

( ci
N

) are also shown at the top, as a legend.

As figures show, opinions start in random position spanning the interval [0, 1],

and stabilise around a particular value. The system never reaches a frozen state, with

small fluctuations preserved even after the clusters are formed (see Fig. 4 for the effective

number of clusters in the different regimes). This is due to the parameter ε, which allows

for agreement even when the overlap between two individuals is zero, or disagreement

even when the overlap is one.

For the case of segregated initial populations, Figures 8 and 9 show the formation
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Figure 8. Opinion values for K = 5, N = 300, ō = 0.49, ~I = [1, 0, 0, 0, 0]. Each

row corresponds to the positions in the opinion vector ~x = [p1, p2, p3, p4, p5], while

each column represents a different pI . Individual opinions are coloured based on the

cluster membership, with cluster sizes included in the legend. The information value

is represented in red. In this case five clusters are formed.
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Figure 9. Opinion values for K = 5, N = 300, ō = 0.49, ~I = [0.4, 0.2, 0.2, 0.1, 0.1].

Each row corresponds to the positions in the opinion vector ~x = [p1, p2, p3, p4, p5], while

each column represents a different pI . Individual opinions are coloured based on the

cluster membership, with cluster sizes included in the legend. The information value

is represented in red. In this case five clusters are formed for pI = 0 and pI = 0.01 and

three for pI = 0.5.
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Figure 10. Opinion values for K = 5, N = 300, ō = 0.62, ~I = [1, 0, 0, 0, 0]. Each

row corresponds to the positions in the opinion vector ~x = [p1, p2, p3, p4, p5], while

each column represents a different pI . Individual opinions are coloured based on the

cluster membership, with cluster sizes included in the legend. The information value

is represented in red. In this case one cluster is formed for pI = 0 and pI = 0.01 and

two for pI = 0.5.
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Figure 11. Opinion values for K = 5, N = 300, ō = 0.62, ~I = [0.4, 0.2, 0.2, 0.1, 0.1].

Each row corresponds to the positions in the opinion vector ~x = [p1, p2, p3, p4, p5],

while each column represents a different pI . Individual opinions are coloured based

on the cluster membership, with cluster sizes included in the legend. The information

value is represented in red. In this case one cluster is formed for pI = 0 and pI = 0.01

and three for pI = 0.5.
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of five clusters within the population, for pI = 0. These five clusters are maintained for

extreme information, regardless of the value of pI , due to the segregation effect of such

information. For milder external message, on the other hand, the five clusters are only

maintained when the frequency of exposure is small. In this situation, however, although

the average overlap with the information is quite large (Figure 4), no individuals agree

completely with the information. Larger pI causes a large cluster to form around the

external information value, showing the cohesion effect of a mild message (which appears

only when the frequency of exposure is large enough).

Figures 10 and 11 show similar graphs for a compact initial population. When no

information is present, all individuals form one cluster. Plots for pI = 0.01 validate

the explanation of the total agreement/disagreement observed in Figures 4 and 5.

Specifically, low exposure to the information allows the population to initially form

one cluster, similar to no exposure, which is afterwards slowly affected by the external

message. When this is extreme (Figure 10), the cluster shifts away from the external

information, since it is too dissimilar. On the contrary, when the information is mild,

the cluster moves towards it resulting in complete agreement (Figure 11). For pI = 0.5,

the group, determined previously by the initial condition, does not form, and part of

the population adheres to the information directly. For extreme information, the cluster

overlapping with the information is small, while for the mild message, this dominates

the population.

All in all, we observe that a small pI allows for dynamics to be determined by the

initial condition at the beginning of the system’s evolution. Clusters are influenced by

information after they are formed: these move away or close to the information value,

depending on the cluster overlap with the external input. For larger pI , the initial

overlap of each individual with the external information is important: individuals who

are far away form additional clusters that are then too distant from the rest of the

population and from the information to be attracted back.

3.3.2. Biased population In the simulations presented until now, the population was

random, i.e., not biased, on average, towards any opinion. Information, on the other

hand, was considered extreme if it promoted strongly one of the possible choices.

Extreme information was shown to have limited effect on such populations. However,

there can be situations where the initial population is already biased towards one

of the possibilities, in which case, extreme information can still have a large effect.

Figure 12 shows the effect of different information types for such a biased population.

It is obvious that if the bias in the population coincides with the opinion that the

information promotes, then even an extreme information can induce complete (for low

pI) or wide (for larger pI) agreement. However, if the choice promoted by extreme

information is different, then all individuals disagree. Agreement with information, in

the latter situation, increases when information becomes milder. This shows that it is

the similarity of the information to the original population that determines its success,

and not the information structure in itself. In these conditions, the previous observations
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Figure 12. Effect of extreme information on a biased population, with a

positive bias for the first opinion choice (average opinion value for the population

around b = [0.4, 0.15, 0.15, 0.15, 0.15]). The individual points correspond to pI ∈
{0, 0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 1}.

for extreme information can be extended to any situation, if we consider information

“extremism” as a feature dependent on the state of the population, i.e., information

with low overlap to the population.

3.4. Population size

All previous simulations presented have been performed using a limited population size,

i.e., N = 300. Some effects seen in the results can be artifacts of the small population

size, hence in this section we are analysing some of the previous simulation settings for

increasing population sizes i.e., N ∈ {100, 300, 1000, 2000}. Due to increased running

times for larger populations, only the situation K = 5 has been studied, with ten

instances for each parameter set.

A first such analysis involves the effect of the initial condition, i.e., the average

initial overlap in the population. Figure 13 shows the number of clusters for different

instances with various initial ō. This shows that the transition between K clusters

obtained for low ō and one cluster for large ō, observed in Section 3.1, is conserved

for different populations sizes. Further this transition becomes steeper as N increases,

with less frequent intermediate values at the transition point. This indicates that the

intermediate number of clusters obtained for N ∈ 100, 300 could be an artifact of the

small population size; however, the curves overlap very well, especially for larger N .

These observations indicate a low dependence between the effect of the initial condition

and the population size. As long as the population is not extremely small, (as seen for

N = 100, where the curve seems more different than the others), results do not change

much, at least qualitatively, by increasing the population size.

In a similar fashion, the external information effect has been studied for different

population sizes, for K = 5. Figure 14 displays the average number of clusters and the



Opinion dynamics with disagreement and modulated information 19

o

P
R

1
2

3
4

5

0.50 0.55 0.60 0.65

N=100
N=300
N=1000
N=2000

Figure 13. Effect of the initial condition for different population sizes and K = 5.

Dots represent values for individual runs, while the lines show average number of

clusters (computed by binning).

final average IO for four population sizes, I = [1, 0, 0, 0, 0] and two initial conditions

(compact and dispersed initial population). This shows an extremely good overlap

between the curves corresponding to each population size, indicating, for external

information as well, that results are not influenced by N . Cluster sizes, in the case

of segregated initial population (ō ∼ 0.49), become more uniform as the population

grows, i.e., PR value is closer to 5. This suggests that, for an infinite such population,

extreme external information would produce equally sized clusters in the population.

Further, we study relaxation times depending on N and information type. Since

opinions do not converge to one value during simulations, relaxation time is defined as

the number of updates (total number of interactions) required to obtain stable clusters

and information agreement, even though opinions will still fluctuate. Figure 15 displays

the scaling, averaged over 100 simulation runs, of the relaxation times vs. N for two

information types (with pI = 0.5) and two initial conditions. This shows that, in general,

clusters form faster when the initial population is more compact (right vs. left plot).

The scaling of the relaxation time with N features a linear behaviour in all cases. An

exception is a segregated population exposed to mild information, where the scaling is

slightly more than linear with a fitted exponent ∼ 1.11. Finite-size effects are visible for

small populations sizes, which features also larger error bars. These finite-size effects
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Figure 14. Effect of extreme information (I = [1, 0, 0, 0, 0]) on K=5 and two different

initial conditions, for different population sizes. The individual points correspond to

pI ∈ {0, 0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 1}.

can be explained by the sparser sampling of the opinion space during initialisation, for

small populations.

The effect of external information on the relaxation time is also displayed in Figure

15. The two initial conditions show different trends. For a segregated starting point

(left panel) the two types of information have opposite effects on the relaxation time.

Specifically, exposure to mild information (which, as we saw before, has a cohesive effect)

increases significantly the relaxation time, due to the contrasting effects of the initial

condition and information type (i.e., segregation vs cohesion). For a compact initial

condition (right panel) both information types have the same effect.

4. Conclusions

A new model for opinion dynamics was introduced, considering the internal probability

of individuals to choose between several discrete options, i.e., with opinions represented

as a vector of continuous values with unity sum. Both attractive and repulsive dynamics

are considered, through a standalone mechanism, i.e., based on pairwise similarity and
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Figure 15. Relaxation times for two initial conditions (left and right plots,

respectively) and two information types, vs. N . Times shown represent the number

of pairwise interactions . Points represent averages over 100 simulation runs, with

error bars corresponding to one standard deviation from the mean. The continuous

lines show distributions of t for large population sizes, fitted to the simulation times

for N ≥ 5000. The distributions are of the form t = αNβ , with β = 1 (i.e., linear

dependency) for all situations except ō ∼ 0.49 and ~I = [0.4, 0.2, 0.2, 0.1, 0.1], when

β = 1.11 (left panel, blue line).

not introducing further model parameters. An important feature of the model is the

ability to expose the system to modulated external information, so that more possibilities

can be promoted (e.g. by mass media).

Numerical results showed that extreme information causes fragmentation and has

limited success, while moderate information causes cohesion and has a better success in

attracting individuals. This coincides to the success of marketing or election campaigns,

where coalitions and milder messages are more effective. Additionally, information

success is maximised when individuals do not interact too much with the information,

showing the importance of the social effect in information spreading. An important

factor driving the capacity of information to influence the population appears to be the

initial similarity to the agents. This is a known fact in devising marketing strategies,

for instance, where information is displayed in a way appealing to the target audience.

Similar effects of external information have been observed previously for other

models (either discrete or non-vectorial opinions). For instance, [29] observed that

aggressive media campaigns are not effective, using the Deffuant model with external
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information, and that individuals should be exposed to the external influence gradually

in order to optimise its success. Further, in [32, 34], for the Hegselmann-Krause model,

it was shown that extreme information causes formation of antagonistic clusters, while

mild messages are more successful. A segregation effect from external information has

been also observed for the Axelrod model [35, 30, 36], similar to our observations for

extreme information (information in discrete models, such as Axelrod, is equivalent to

the extreme information in a continuous model, i.e., promoting one option only).

The initial condition proved to be of large importance in the dynamics, with

compact populations resulting in one cluster, while less compact starting points yielding

more groupings. A similar large effect of the initial condition has been recently shown in

[37], for the Deffuant model. Additionally, for our model, the decrease in the transition

point with K indicated that agreement is easier to obtain for a larger number of choices

(with no external information). This is similar to the findings for the model in [17],

which shares similarities to our approach. This uses a bounded confidence threshold d,

and it was shown that the critical value of d, for which complete agreement is obtained,

decreases as K increases. In our model, bounded confidence is not present, however

the initial condition plays a similar role in determining the number of clusters, and

we observe a very similar effect of K on the critical ō for which complete agreement is

obtained.

A scaling analysis showed that results for both the effect of the initial condition

and external information are robust with respect to the population size. Additionally,

relaxation time (total number of updates), was shown to become linear in the population

size as the size increases.

Several further analyses of the model presented are envisioned for the future. These

include changing the dynamics to allow individuals to interact on more than one opinion

choice and studying different social network topologies (here, all results are presented

on a complete network). Additionally, application to real data, in order to simulate

observed social processes and be able to make predictions, is required to further validate

the model. In the context of the EveryAware project [38], the model will be also

applied to simulate behavioural and opinion changes on environmental issues, based on

subjective data which will be collected during test cases.
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