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Abstract. FuturICT foundations are social science, complex systems science, and ICT. The main concerns
and challenges in the science of complex systems in the context of FuturICT are laid out in this paper
with special emphasis on the Complex Systems route to Social Sciences. This include complex systems
having: many heterogeneous interacting parts; multiple scales; complicated transition laws; unexpected or
unpredicted emergence; sensitive dependence on initial conditions; path-dependent dynamics; networked
hierarchical connectivities; interaction of autonomous agents; self-organisation; non-equilibrium dynamics;
combinatorial explosion; adaptivity to changing environments; co-evolving subsystems; ill-defined bound-
aries; and multilevel dynamics. In this context, science is seen as the process of abstracting the dynamics
of systems from data. This presents many challenges including: data gathering by large-scale experimen-
t, participatory sensing and social computation, managing huge distributed dynamic and heterogeneous
databases; moving from data to dynamical models, going beyond correlations to cause-effect relationships,
understanding the relationship between simple and comprehensive models with appropriate choices of vari-
ables, ensemble modeling and data assimilation, modeling systems of systems of systems with many levels
between micro and macro; and formulating new approaches to prediction, forecasting, and risk, especially
in systems that can reflect on and change their behaviour in response to predictions, and systems whose
apparently predictable behaviour is disrupted by apparently unpredictable rare or extreme events. These
challenges are part of the FuturICT agenda.

1 Introduction

Simplicity and sparsity of scientific description have al-
ways been regarded as a theoretical virtue. Aristotle in
the Posterior Analytics says: “We may assume the supe-
riority ceteris paribus of the demonstration which derives
from fewer postulates or hypotheses.” According to New-
ton “Nature is pleased with simplicity, and affects not the
pomp of superfluous causes”, while we learn from Ein-
stein that “The grand aim of all science ... is to cover the
greatest possible number of empirical facts by logical de-
ductions from the smallest possible number of hypotheses
or axioms.”
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Modern science started with the analysis of the sim-
plest phenomena and physics, a reductionist science par
excellence, emerged as the leading example of how the
human mind can make sense of the apparent chaos of the
phenomena surrounding us. The key to the early success of
physics was that it studied objects that could be described
in terms of a few variables, could be well separated from
their environment, with well-targeted reproducible experi-
ments that could be performed on them. During the course
of its development physics has learned how to tackle prob-
lems that are immensely more complicated than the free
fall of balls from the Tower of Pisa, but the reductionist
program remains one of its core motivations. The dream of
a “theory of everything” drives the quest for the ultimate
building blocks of the Universe and for the explanation of
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its origin - an endeavor constituting one of the frontiers of
science.

However, as stated by P. W. Anderson in 1972 [1] the
reductionist hypothesis does not by any means imply a
“constructionist” hypothesis: the constructionist hypoth-
esis breaks down when confronted with the twin difficulties
of scale and complexity. Most of the objects of scientific
inquiry share these difficulties. For example, a living being
cannot be described in terms of a few variables, a human
being cannot be separated from the rest of society with-
out altering its nature fundamentally, and the functional-
ity of our brain emerges from the network of interacting
neurons. These are examples of what nowadays are called
complex systems. A growing body of knowledge is being
accumulated about these complex systems, a large num-
ber of groups are striving for a deeper understanding of
their common features and an ever richer set of concepts
and tools are being devised to tackle them. These devel-
opments are gradually leading up to what we believe is
becoming a coherent and fundamental science of complex-
ity [2,3]. Understanding the basic principles of complexity
and emergent phenomena in complex systems is the oth-
er frontier of present day science. If the goal of particle
physics is the ultimate analysis, that of complexity sci-
ence is the ultimate synthesis. To promote this synthesis
is one of the main motivations of the FuturICT program.

Other motivation stems from the ever-increasing rel-
evance of complex-systems oriented approaches to social
science [4]. It may be surprising but the idea of a physical
modeling of social phenomena [5] is in some sense old-
er than the idea of statistical modeling of physical phe-
nomena. The discovery of quantitative laws in the collec-
tive properties of a large number of people, as revealed,
for example, by birth and death rates or crime statistics,
was one of the catalysts in the development of statistic-
s, and it led many scientists and philosophers to call for
some quantitative understanding of how such precise reg-
ularities arise out of the apparently erratic behavior of
single individuals. Hobbes, Laplace, Comte, Stuart Mill,
and many others shared, to a different extent, this line of
thought [6]. This point of view was well known to Maxwell
and Boltzmann and probably played a role when they a-
bandoned the idea of describing the trajectory of single
particles and introduced a statistical description for gases,
laying the foundations of modern statistical physics. The
value of statistical laws for social science was foreseen al-
so by Majorana [7]. But it is only in the past few years
that the idea of approaching society within the framework
of statistical physics has transformed from a philosophi-
cal declaration of principles to a concrete research effort
involving a critical mass of scientists. The availability of
new large databases as well as the appearance of brand
new social phenomena, mostly related to the Information
and Communication Technologies, and the tendency of
social scientists to move toward the formulation of simpli-
fied models [8,9] and their quantitative analysis [10], have
been instrumental in this change. Nowadays the under-
standing of the dynamics of human societies and finding
viable solutions to the enormous problems they are facing

is a matter not only of knowledge, but survival. Demo-
graphic changes, migrations, destruction of the environ-
ment, depletion of resources, the structural instability of
our economic and social systems are only some of the most
prominent among these problems. FuturICT is devoted to
the analysis and modeling of these complex and interwo-
ven processes.

2 Complex Systems

Conventional wisdom suggests that simple systems behave
simply, complex behavior arises from complex causes and
that different systems behave differently. There is ample
evidence, even in the physical sciences, that these state-
ments are unfounded and not generally correct. The root-
s of such oversimplified views are closely related to the
problems of complex systems themselves, e.g. the choice
of appropriate variables, the lack or multitude of scales,
multilevel structure in both space and time, the level of
description, and so on. It can be highly non-trivial to find
the simple causes behind complex behavior and to select
appropriate variables by which the possible generic behav-
ior of the system would become apparent.

An important source of difficulties stems from the fun-
damental problem of the level of detail and complexity
needed for the understanding of the structure, function,
and response of a complex system of interest. This is
perhaps best gained with the analysis of data from well-
devised experiments or from various datasets and proper
modeling. The success of this two-step empirical approach
has to be judged in relation to the goal and purpose of
the study process, while aiming for understanding, pre-
dicting1, managing and even controlling the behavior of
the system. In all this it should be emphasized that mod-
eling goes hand in hand with the availability and use of
the data. This is because the need for empirical data is
paramount not only for the understanding and exploration
of the features and phenomena of the systems of interest
but also for calibrating and validating the models for im-
proved usefulness in predicting, forecasting, and managing
the behavior of the system.

1 One of the challenges for complex systems science is to
better understand the term ‘prediction’ and the part it plays
in science and its applications. In this paper it will be used
generally to include various different ways for describing the
future behaviour of systems. Traditionally science has made
point predictions that a system will be in a particular state
at a particular point in future time. Beyond relatively short
horizons, point predictions of systems that are sensitive to ini-
tial conditions become increasingly error prone, e.g. the weath-
er. This is so even when the underlying model is prefect, due
to inevitable errors in measuring initial conditions. Some pre-
dictions are probabilistic based on estimates of relative fre-
quencies, but this approach is inappropriate for ‘rare’ events
of measure zero. Predictions of social systems may be self-
contradictory as the system reflects on and changes behaviour
in response to the prediction, or self-fulfilling prophesies when
policy forces events to happen.
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Calibration can be a delicate task and much attention
should be paid to it. Given the level of complexity and the
related dimensionality of the problem the amount of data
used for calibration should be chosen such that overfitting
can be avoided in order to exclude spurious dependen-
cies. On the other hand - as follows from the very nature
of complex systems - as much data as possible should be
used. This issue reflects the deep problem of computer sci-
ence of finding the balance between avoiding both over-
fitting and oversimplification. Of course, it is also related
to the problem of finding the right variables mentioned
previously.

In the new ICT-based frame of Social Sciences, the
main problem is often not data availability but the chal-
lenge of extracting relevant knowledge from observational
data and in devising useful data acquisition for answering
specific questions of the behavior of the system of interest.

In relation to these specific questions we see an increas-
ing role of more question-driven research, where massive,
ICT-based data are already collected with a specific aim
and even experiments are being devised (see Sect. 7.2).
Such a trend could lead to or open new frontiers in stud-
ies of ICT-related social systems. To summarize we envis-
age that the study of a complex system should proceed in
the following steps in which the use of data and models is
essential:

i) Exploration, observation and basic data acquisition,
ii) Identification of correlations, patterns, and mechanism-

s,
iii) Modeling,
iv) Model validation, implementation and prediction,
v) Construction of a theory.

In devising a model for a given system with a large
number of constituents it is useful first to discuss how one
would characterize the basic constituents and/or govern-
ing laws (if known). In this context a distinction can be
made between complicated systems and complex systems.
Complicated systems are viewed to have a large number of
components which behave in a well-understood way and
have well-defined roles leading to the resulting effect, e.g.
modern airplanes with millions of physical parts and even
tens of millions of lines of software. Complex systems typ-
ically have a large number of components, where the in-
teractions (however simple they may be on the individual
level) lead to collective emergent behaviours that cannot,
even qualitatively, be derived as a plain resultant from the
individual components’ behavior. Paramount examples of
complex systems are our brain and our societies.

All domain-based sciences such as physics, chemistry,
biology, psychology, sociology, economics, robotics, medicine
and business investigate systems that are complex in one
way or another. These sciences investigate their domain-
s in depth, which contrasts with the emerging science of
complex systems which intersects the domains horizontal-
ly. By looking across the disciplines the methodology of
complex systems provides two new perspectives: the first
is that apparently different systems may have common
properties and knowledge from one discipline can usefully

many heterogeneous interacting parts cities, companies, climate, crowds
political parties, ecosystems

complicated transition laws markets, disease transmission, cascading failure
rioting, professional training

unexpected or unpredictable emergence chemical systems, accidents, system breakdown
spontaneous social initiatives, foot and mouth disease

sensitive dependence on initial conditions weather systems, investments
traffic jams, forest fires

path-dependent dynamics the evolution of the qwerty keyboard,
racial conflicts, first to market

networked hierarchical connectivities social networks, ecosystems ,the Internet
voting systems, postal systems

interactions of autonomous agents road traffic, dinner parties
housing markets, soccer games, crowd dynamics

self-organisation or collective shifts revolutions, fashions, choirs
demonstrations, property rental markets

non-equilibrium dynamics fighter aircraft, share prices, the weather
armed conflict, social networking

combinatorial explosion chess, communications systems,
data states for a computer program

adaptivity to changing environments biological systems,manufacturing design
retail systems, rebranding

co-evolving subsystems land-use, transportation
computer virus software

ill-defined boundaries genetically modified crops, nations,
pollution, terrorism, markets

multilevel dynamics companies, armies, governments
aircraft, Internet, transportation

Table 1. Reasons why systems might be considered to be com-
plex

feed into another; the second is that the science of complex
systems is trans-disciplinary and it is creating new meth-
ods to combine the dynamical theories of many interact-
ing social and technical subsystems. Unlike domain-based
sciences such as those mentioned above, complex system-
s science is integrative - a science of systems of systems
across many domains.

There is no agreement on what should be the precise
definition of complex and there are many reasons as to why
a system might be considered complex. Table 2 reports a
list of features typical of complex systems along with con-
crete examples of systems displaying those features. Of
course many systems could exhibit several of these fea-
tures. Any one of them can make systems appear com-
plex, but together they can make systems very difficult to
understand and control [11]. A key characteristics of com-
plex systems is their ability to reconfigure themselves to
create new systems with completely different properties.

Complex systems such as cities, the human body, or
economies have dynamics at many different scales. The
presence of many scales or, even worse, the confluence of
scales and lack of a characteristic scale that would allow
the breakdown of the problem into sub-problems makes
a standard reductionist micro-macro approach difficult.
This leads to the appearance of fat tails and self-similar
distributions, e.g. Pareto-distributions of wealth, company
size, capitalization, etc..



4 Maxi San Miguel et al.: Challenges in Complex Systems Science

Socio-technical systems have strong interactions lead-
ing to collective behaviour, building up macroscopic struc-
tures that act as top-down constraints on the microscopic
degrees of freedom (mode slaving), e.g. long wavelength
spin waves acting as an external field on the individual
spins, or institutions, conventions, traditions, culture, etc.
acting on, and largely conditioning, the agents that creat-
ed them. Thus “the whole is more (or less) than the sum
of its parts”: e.g. cutting a horse in two does not result
in two small horses; the merger of two successful compa-
nies (or universities) rarely creates a better company (but
may create a monopoly); and uniting disparate nations
into Yugoslavia led to disaster 70 years later. Underly-
ing the formation of wholes is the emergence of strong,
long-range interactions and correlations in complex sys-
tems, that link distant parts. Complex systems are likely
to feature non-local interactions in space and time. This
property often makes systems sensitive not only to ini-
tial conditions, but also to boundary conditions and small
changes in the control parameters.

This is tightly related to “irreducibility”, i.e., the im-
possibility of describing a complex system in terms of a
few variables. (The local susceptibility is the sum of cor-
relations measured from the given local element: if corre-
lations are long ranged and the system is heterogeneous,
the local susceptibility depends on a large number of vari-
ables.) Multi-attractor structure and the resulting path-
dependence are related aspects. Complex systems may
sometimes evolve slowly, but they are never in equilibrium
(unless dead). For example: it is hard to predict biological
evolution, but it may be possible to rationalize backwards.

Beyond a certain level of complexity systems not only
reflect their prior evolution, but also start to learn, and
modify their behaviour according to changes in the envi-
ronment, conditions, etc. At even higher levels they self-
reflect, react to what they “think” about themselves, or
what is thought about them, e.g. self-fulfilling prophecies,
collective myths, etc.. For example, tourism may cause
prices to rise as traders see the opportunities, but make
local people resentful with the self-perception of being
second-class citizens.

Concerning controlling or regulating complex system-
s, the Law of Unintended Consequences has a pervasive
effect. As a consequence of the irreducibility of complex
systems, they cannot always be reliably regulated or con-
trolled, but since social arrangements, markets, finance,
etc. are man-made, one can strive to reduce their complex-
ity to bring them into controllable regions. For example, it
may be that some financial procedures and products cre-
ate systems that are inherently volatile and unpredictable
exposing society to risk of highly damaging outcomes. In
these cases the contribution of science is to inform the reg-
ulators that this particular system, due to its complexity
and unknown to its designers, is inherently unpredictable
and undesirable. In this case the danger can mediated by
simplifying the products and procedures to make them
more predictable and controllable.

In the context of economic systems, neither central
planning nor self-regulation seem to work, but biological

regulation (an intricate network of positive and negative
feedbacks, checks and balances on every level) appears to
be capable of keeping a complex system in homeostasis,
at least for an extended period.

3 Open fundamental questions in Complexity
Science

Simple versus comprehensive models.

Complex systems need not be complicated, but in real
life they often are. Simple models are essential to uncov-
er the basic mechanisms and provide insight into funda-
mental questions. However, in order to be able to predict
self-fulfilling prophecies, collective myths, etc.. or forecast
the behavior of real systems one often has to go to more
detailed, multi-parameter models. Both approaches have
their justification and they are complementary. Howev-
er, this kind of “pluralistic” modeling [12] does not mean
the acceptance of different scientific truths, rather it could
give more comprehensive perspective to the behavior of
the system of interest. The models should be hierarchical-
ly related such that previously discovered basic knowledge
should serve as an input into more detailed versions.

When constructing a model of a complex system, the
purpose of the model is important. In physics we know
that any model does not come even close to capturing all
the details of the system. Therefore, we have become ac-
customed to the idea that “the model should be as simple
as possible but not simpler”, but we want the model to
describe some basic features or behavior of the real sys-
tem, at least reasonably well. Thus in our model building
we aim for tractability and clarity, by considering that
‘models are like maps’ so that they are useful when they
contain the details of interest and ignore others.2 So the
utility of simple models in describing the complexities of,
for example, poorly understood ICT-based social system-
s is very high. Simple models may give deep insights in
the same way that the simple Ising model provides use-
ful understanding and quantitative correct predictions on
critical phenomena of real magnetic systems.

The complexity of a system appears as emergent prop-
erties in its often complicated structure, in how it func-
tions, and in how it responds to external influence of dif-
ferent kinds. These properties can best be studied empiri-
cally from the perspective of data analysis. While in natu-
ral science well-devised experiments produce the necessary

2 A passage from Lewis Carroll’s Sylvie and Bruno Conclud-
ed illustrates this point: “What do you consider the largest
map that would be really useful?” “About six inches to the
mile.” “Only six inches!” exclaimed Mein Herr. “We very soon
got six yards to the mile. Then we tried a hundred yards to
the mile. And then came the grandest idea of all! We actually
made a map of the country, on the scale of a mile to the mile!”
“Have you used it much?” I enquired. “It has never been spread
out, yet,” said Mein Herr: “The farmers objected: they said it
would cover the whole country, and shut out the sunlight! So
now we use the country itself, as its own map, and I assure you
it does nearly as well.”
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data, in social science the rapidly increasing availability of
large scale datasets or “digital footprints” left by humans
in various ICT-related systems and services has created
the development of data- or reality-mining (which can al-
so considered as statistical inference). This has become
the main source of empirical studies. These should be ac-
companied by appropriate modeling. In this respect it is
important to note that the term ‘modeling’ has different
meaning for physicists, statisticians and social scientists.
While in physics modeling is mainly aimed at the under-
standing of the underlying mechanisms, in social science
(and in statistics) a fitted curve is already considered to
be a model. Here we use the term more in the physics
sense.

Modeling social complex systems constitutes a major
challenge because of the multiple scales and facets in-
volved. To make progress we need to integrate various
research approaches of different science disciplines. These
include: social psychology experiments and surveys, da-
ta mining, network analysis, complex system and network
theory, agent-based modeling and game theory, theory of
phase transition and critical phenomena, intelligent and
automated (ICT-based or radio-frequency) data-collection
systems etc. These different approaches when integrated
and fused yield a more comprehensive and complementary
picture of the underlying social mechanism and social dy-
namics at different size-scales from individual, to dyad, to
triad, to group, to community, and to whole society lev-
el. Moreover, it is our belief that the future of social ex-
perimenting lies in the combination of computational and
experimental approaches, where computer simulations op-
timize the experimental setting and experiments are used
to verify, falsify, or improve the underlying assumptions
of the model.

The aim of simple models is to get better understand-
ing of the so-called “stylized facts” of the system, i.e.,
to make simplified, abstracted, or typical observations -
in other words capture some “essence” of the real system.
Of course simple models do not describe all the details of a
system under consideration. Another possible advantage
of simple models is that they may facilitate an analytic
treatment and, thereby, give better insight to the plausi-
ble mechanism explaining the behavior of the system of
interest. Simple models can be extended or made more
complicated in a step-by-step way to capture more details
of the system of interest. Moreover, simple models may be
very useful in proving that statements made of a system
are wrong, i.e., they have an eminent role in the falsifica-
tion process. On the other hand it may turn out that the
model describes what everybody already knew, i.e., some
common wisdom. In this case the model, though simple,
captures some of the salient features of the real system.
This then serves as a starting point for more complicated
models, with the hope of capturing even more features of
the real system of interest correctly.

Concerning the predictive power of models, it is not
necessarily the case that more complicated models do a
better job. In fact it often turns out that simple models
can do a very good job due to their clarity and tractabil-

ity. Therefore prediction or forecasting capability is not
always a good measure for the usefulness of models, but
rather testable model implications are pluralistic[12]. Fur-
thermore a distinction between prediction and forecast-
ing should be made: prediction should carry a weaker but
more general meaning, e.g. by predicting types of behav-
ior rather than quantitative forecasting. Also forecasting
models, such as weather forecasting, are often based on
known physical laws. In case of social systems one is more
inclined to think the aim of computer simulations is to
predict qualitatively the possible behavior of the system.

Being able to predict the behavior or forecast the dy-
namics of a system is followed by the possibility of it be-
ing managed. Once one is able to model and predict the
behavior of the system, even qualitatively, it yields under-
standing of the system enabling the making of decisions,
policies and further development of the system. This con-
stitutes the ability to manage the system at some level,
which can further be enhanced by improving the models
step-by-step. If on the other hand one is able to go in more
quantitative directions and forecast system outcomes, the
model can then serve as a tool for developing and opti-
mizing the system and its functions.

Micro-macro connection. Choice of variables.

There are instances in which a well established method-
ology exists to link the micro and macro descriptions al-
lowing an appropriate choice of variables to describe a
given phenomenon. This is not generally the case and a
methodology is needed to avoid the temptation of ultra-
realistic models in which irrelevant information is includ-
ed: for example, sub-nuclear, atomic or molecular descrip-
tion of water is useless for wave motion in the sea; and
particular car engine characteristics are not relevant in
traffic modeling. Examples of these methodologies include
the connection between the atomistic and hydrodynamic
descriptions as successfully used in traffic modeling (the
cars being the atoms) or the choice of order parameters
based on symmetry principles as the appropriate variables
for the study of continuous phase transitions. Another ex-
ample is the methodology of the Renormalization Group
in Critical Phenomena that provides a mathematically
framework to identify relevant and irrelevant parameters
by looking for an analytical description of the systems in
the space of the scale transformations. This also leads to
a well defined and operational meaningful notion of uni-
versality. Likewise, centre manifold theory allows one to
identify the relevant variables and to derive their dynam-
ical equations (amplitude equations), through a multiple
time scales analysis, for the description of a system close
to an instability point. Some of these methodologies ap-
pear in different contexts with different degree of mathe-
matical formalization, but with the same basic contents,
such as the derivation of amplitude equations or the slav-
ing principle of Synergetics (justified rigorously by normal
hyperbolicity theory).

These examples show that success is possible, but find-
ing a framework to solve this question in general complex
systems remains a challenge. The rationale behind this



6 Maxi San Miguel et al.: Challenges in Complex Systems Science

question was spelled out by T. Schelling [8] in his Mi-
cromotives and Macrobehavior book:There is a class of
important propositions that are true for the aggregate and
not in detail, and that are true independently of individual
behavior. Of course this does not refer to simple statisti-
cal properties of a large number of independent units, but
to emerging phenomena that result from their non linear
interactions.

The challenge remains to find a methodology or a clas-
sification of methods and protocols for the choice of vari-
ables describing complex behavior. Better choices than in-
tuition or focusing on the variable of interest for the ob-
server are needed. Many financial market models consider
that all relevant information is contained in prices, and
therefore there is no need to consider anything else. But
is this the only relevant variable? In models of opinion dy-
namics the preferred variable of choice is the proportion of
people with a given opinion, but it might well be that this
is not the most relevant variable of the dynamical process
which should be extracted a posteriori, in the same way
that a directly observed quantity in a physical instability
is not the dominant amplitude variable for which the dy-
namics is well characterized.

Beyond the emergence of simple collective behav-
ior

Simple collective behavior is an emergent property in
the behavior of an aggregation of interacting units that
cannot be understood from extrapolation of the proper-
ties of the units. This, for instance is the case of phase
transitions in physical systems. There are well established
theories and concepts like broken symmetry [1] to under-
stand these situations. Flock formation is another example
of simple collective behavior [13]. But already in his pio-
neering paper of 1972 Anderson identifies that the next
stage could be hierarchy or specialization of function, or
both [1]. Indeed, there are emergent phenomena that, be-
yond not being reducible to individual properties, give rise
to hierarchy, multilayered structures and functionalities -
a prominent example being the emergence of organization-
s and institutions in social systems. We are still lacking a
general theory or a satisfactory and sufficiently general
conceptual framework to describe and understand these
emergent properties.

Beyond correlations: the search for cause-effect re-
lations

Many studies of what are today considered as com-
plex systems have traditionally relied on blind statisti-
cal analysis. The observation of these systems provides
correlations of different types. Sometimes these correla-
tions are considered to be some type of “laws of nature”
that should be reproduced by ad-hoc modeling. To go be-
yond the knowledge provided by these correlations and to
be able to establish cause-effect implications is an urgen-
t challenge. This general question appeared long ago, for
instance in the economics literature [14]. Recent work in
this direction is in the context of directed networks infer-
ence [15,16]. Still we are far from a satisfactory solution

to this question. On the one hand it requires the identifi-
cation of mechanisms that are isolated and implemented
in models to investigate their consequences. On the other
hand it also requires new approaches to data gathering
and analysis.

Common sense thinking and problem solving often adopt-
s the concept of a single cause and a single effect. It al-
so suggests that small changes in the cause imply small
changes in the effect. It does not literally mean that there
is a linear relationship between the cause and the effect,
but it means that the system’s behavior will not be sur-
prising, and it is predictable, i.e., changes in the parame-
ters or in the structure of the system do not qualitatively
alter its behavior, and the system is structurally stable.

Circular causality in essence is a sequence of cause and
effect whereby the explanation of a pattern leads back to
the first cause and either confirms or changes that first
cause. The concept itself had a poor reputation in legit-
imate scientific circles, since it was somehow related to
use vicious circles in reasoning. It was reintroduced into
science in cybernetics [17] emphasizing feedback. The con-
cept of circular causality is reflected also in the theory of
reflexivity, an approach promoted in economics by George
Soros [18].

Data

Empirical science is based on the analysis and mod-
eling of data. The explosion-like development of ICT has
resulted in an enormous increase in the data available for
investigation. This is true for traditional “hard sciences”
but even more so for the social sciences. Many of our ac-
tivities leave digital footprints that form huge data sets.
Our phone and email communication, browsing the in-
ternet, using applications like Facebook, and commercial
activities are all documented and can be used for scientific
analysis to provide insight into phenomena and processes
at the societal level. This approach has already made it
possible to understand the relationship between the struc-
ture of the society and the intensity of relationships, the
way pandemic diseases spread and what are the main dy-
namic laws of human communication behavior. The avail-
ability of data makes it possible to study in detail some of
the most intriguing aspects of complex systems, namely
their hierarchical structure, and how it is related to the
dynamics. What are the laws of “microscopic” social inter-
actions? How meso-level structures form and what is their
role? What are the emergent cooperative phenomena at
the societal level? ICT has enabled a new approach called
computational social science and this puts these questions
within the scope of empirical investigations. The extension
of empirical analysis to include massive ICT data, sup-
ported by large-scale multi-agent modeling has provided
social science with immediately applicable tools able to
handle issues of major concern. In fact, it gives the hope
that mankind may be able to cope with many pressing
issues.

The data deluge related to the ICT brings up several
challenges. First, much of the data are not publicly avail-
able. Some of them, like mobile phone data are compa-
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ny property, while others such as much financial data are
only available commercially. There have been efforts by
scientists to create an openly accessible pool of data for
research purposes [19,20], but perhaps the most severe
problem of data driven social science is related to this
point. In “hard sciences” reproducibility of results is cru-
cial, but without open access to data this is not possible
in computational social science. While we should aim at
broadest possible availability of data, the production of
well calibrated artificial data sets is one of the important
tasks in this field.

Further challenges are related to the quality of data.
Most often ICT related data are not collected for scientific
use but, e.g., for billing purpose as in the case of mobile
phone data or for marketing like in the case of point col-
lecting in supermarkets. In such cases metadata like age,
gender, location etc. of the people can be assigned to the
data in a rather noisy manner. This leads to impure data,
with gaps and mistakes. Cleaning the data and construct-
ing reference data or standards need new techniques and
here massive interaction with social scientists will be nec-
essary.

Of course, the handling of sensitive data raises ethical
problems [21]. At the moment there is only limited reg-
ulation in this respect. Two opposite opinions have been
formulated: (i) no extra regulation is needed in addition
to the general legal framework; and (ii) there is need for
institutional solutions similar to those in genetics and tra-
ditional social science. A thorough study by the National
Academy of Sciences, US [22] supports the latter view.

Even in everyday life the data deluge has changed our
attitude to information. While previously searching for in-
formation was typical, today selection has become most
important. This means in science that data mining and
processing techniques have become crucial for the devel-
opment of the field of complexity science. While the ques-
tion of dimensional reduction of the data to arrive at use-
ful information remains a central problem (as is usual in
empirical science), the next foreseeable frontier is a com-
plementary approach that implies a shift from data-driven
modeling to question-driven data-gathering i.e., the goal
is producing or gathering data to answer a specific ques-
tion. This is in the spirit of classical experiments designed
to obtain data to test theoretical predictions. True vali-
dation of models, as opposed to models fitting raw data,
requires comparison of model implications (quantitative
or qualitative) with data obtained under the conditions
and assumptions of the model. Such experiments are nat-
urally designed in some virtual environments, like internet
games or in electronic social networks, and they are part
of the new undertaking in social experimenting [23]. Of
course, ethical issues have to be handled with appropriate
care. We refer to Section 7.2 for a more detailed discussion
of the platforms for social computing and web-gaming.

Ensemble modeling and Data assimilation

There are fields such as weather prediction or climate
research in which the fundamental microscopic laws are
well known and established but given the huge range of

relevant scales, meso and macro models are used that im-
plement in different ways large-scale effective interactions
and parametrizations of the same basic phenomena. In
these fields a common practice involves probabilistic fore-
casts based on the combined results of different models or
different specification of a given model. This methodology
is used in a variety of fields [24]. An important method-
ological question is to which extent this pluralistic mod-
eling [12] or combination of forecasts [25] is conceptually
justified beyond purely statistical considerations, in oth-
er fields, such as social phenomena modeling. Pluralistic
modeling should, however, not mean that different mod-
els originating form different basic concepts can be simul-
taneously considered. A related methodological question
is the possible general use of the data assimilation pro-
cedures of atmospheric modeling [27]. The basic idea is
combining forecasting and observation for initial condi-
tions in dynamical modeling: Forecasting at a given time
has to be combined with large scale observations at that
time. Another methodology recently developed in climate
(see e.g, [26]) is based on analyzing the hidden informa-
tion in the dynamics of weather similarity (network links
measured by cross-correlations) between pairs of location-
s. This yields an evolving network characterization of the
climate that was found useful for example in better un-
derstanding of the El-Nino phenomena.

From Data to Dynamical Models

Figure 1 illustrates the scientific perspective of com-
plex systems methodology. It begins with data from which
scientists reconstruct phenomenological models. For ex-
ample, Kepler constructed a phenomenological model in
which the planets sweep out equal areas in equal times
which Newton formulated as a theory of planetary mo-
tion able to reproduce this phenomenology. In the case
of the motion of two bodies, Newton’s Laws produce e-
quations that can be solved explicitly making it possible,
for example, to predict precisely where a cannon ball will
land. In the three-body case the equations cannot be inte-
grated and the system is chaotic. Nonetheless the spatio-
temporal behaviour of the system can be simulated by it-
erated computation providing an augmented phenomenol-
ogy (Figure 1, bottom right). The objective in this mod-
eling is to produce an augmented phenomenology whose
statistical difference from observation, ∆, is as small as
possible (theoretically zero for a perfect model). In most
cases simulations can at best sample the space of all sys-
tem trajectories around given initial conditions with an
error, ∆, which measures the difference between the sta-
tistical distributions of the simulated trajectory and the
statistical distributions of the data. Since each iterated
calculation in a simulation of a system sensitive to initial
conditions creates error, ∆ increases with time.

As a social systems example consider the people e-
vacuating a building in an emergency. Helbing [80] ob-
served the motion of people in crowds and created a phe-
nomenological model of the ways people move with re-
spect to each other. Using this phenomenological model
Helbing used agent-based computer simulation to create
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Fig. 1. The complex systems methodology for reconstructing
models and theory from data

an augmented phenomenology for this system (Figure 1,
bottom-centre). Helbing went on to formulate theoretical
models of pedestrian flows (centre top) permitting spatio-
temporal simulations (mid right) to create another aug-
mented phenomenology (Figure 1, bottom-right). In this
case both the agent simulation and the theoretical mod-
el gave an augmented phenomenology with small error.
In fact Helbing went on to use this new science to assist
the authorities to redesign Mecca for the Hajj pilgrimage
which was subject to fatal accidents with large numbers
of people being trampled as the dynamics of the crowd
changed. The redesign was very successful and many lives
have been saved [81]. This is one of the major success
stories of complex systems science.

4 Interconnected multiple scales networks

In 1998 Watts and Strogatz [28] presented the first evi-
dence of what they called complex networks. Watts and
Strogatz realized that patterns of connections in the neu-
ral network of a worm, in the power-grid of the United
States, and in the network of co-appearances of actors
in movies, showed common features that could not be ex-
plained by simple mathematical models (the two extremes
of total order or total randomness being the most simple).
The presence of short-cuts made these networks extremely
small while at the same time kept track of their ordered o-
rigin through a larger than expected clustering coefficient
(related to the existence of triangles in the network). On
the other hand, as shown slightly later by Barabasi and
Albert [29], the distribution in the number of connections
coming out from given node (e.g. computers in the In-
ternet, pages in the world-wide-web, or number of papers
authored by scientists) show skewed distributions, which
means that there exist some actors in the networks that
are highly connected, which were called hubs. These two
works were the seed of a new field of research.

Nowadays, it is understood that most complex systems
show emergent dynamical properties which are inherent-
ly related to the topology of the underlying network of
connections among the constituent parts of the system.
During these fourteen years we have witnessed how these
ideas have been applied to a myriad of problems ranging
from the cell scale of biochemical networks to the scale of
world population communicating through the information
and communication technologies [30,31].

Up to now we have considered mostly that a given
network description is good for a given problem. If we
plan to understand how proteins interact then we look at
the protein-protein interaction networks, and if we want
to prevent damages in the energy distribution we analyze
the features of the power-grid networks across the globe.

But the question that arises now is to which exten-
t these networks are really independent? Is the distribu-
tion of electricity across the power-grid independent of the
transportation of other energy resources such as gas [32]?
Is it independent of the trade relation between countries as
illustrated by the recent diplomatic issues between former
soviet republics? Is it independent of the communication
network that connects power stations and distribute ener-
gy according to generation and load? The answer is clearly
not - these networks are not independent. The commu-
nication network among power stations depends on the
stability of the power-grid and the same for the other
examples [33]. Buldyrev et al [33] recently introduced a
mathematical framework, based on percolation theory, to
study the robustness of a network formed by interdepen-
dent networks.

But this interrelation not only affects technological or
transportation networks, it also affects social networks.
To how many social networks do we belong? From the
traditional classification of social networks we can identi-
fy friendship networks, kinship networks, professional net-
works, and in a more modern framework we belong to d-
ifferent types of online networks. Networks can relate cus-
tomers among themselves: people who purchased the same
items, people that like and comment on each other’s pic-
tures, and people cooperating in online games together.
How are all these networks intertwined and how do they
affect each other? Online social networking is changing
our way of living, sharing, or even feeling. Perhaps one of
the main drawbacks of Facebook is that the definition of a
“friend” just means someone you are connected to. When-
ever you, as Facebook user, receive a message saying: “...
wants to be your friend”, it can be your mother, your s-
tudent, your thesis advisor, an ex-girl (or boy) friend, or
your online war allies. On the contrary, a new proposal
by Google (Google+) tries to change this feature with its
“circles”, in which one can choose the type of relation-
ship with the other users and hence separate the different
networks we belong to. Those are clearly two different per-
spectives on something that for people is simple “who is
connected to who”, but for scientific reasons it is extreme-
ly important to distinguish these types of connections that
make up our social world.
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Even social and technological networks are strongly
interconnected, e.g. how much our connected social world
depends on electricity resources. Among the most stud-
ied networks over the years we find the Internet and the
World-Wide-Web. The first is identified with the set of
hard wired connections (and now includes wireless pro-
tocols as well) between Internet providers and users that
forms the basic infrastructure for all current communica-
tion technologies. The second corresponds to the set of
pages which contains the information. But nowadays, the
flow of information is not only provided in one direction
from the web servers to the final users, but strengthens
relations among users or among communities at differen-
t scales through different ways of communication: email-
s, chats, messaging, blogging, sharing, and so on. But,
closing the circle, new social interactions are still on top
of technological networks that are vulnerable and can be
monitored and even censored. And one of the most clear
examples took place during summer 2011, since messages
fueling the London riots were mainly broadcast from s-
martphones using a private network which encrypts mes-
sages.

Additionally, these networks form aggregates of users
that can be analyzed at different scales, because the ques-
tions one poses and hence the answers one gets are quite
different. Studies have been performed on online users that
are in the same class-room or at college level [34]. Other
studies focus on the spreading of political ideas through
Facebook or Twitter (in the Arabian countries, in Finland
or later in Spain and the 15M movement of “the indig-
nados” [35] (http://15m.bifi.es/). Finally, other empirical
analyses have focused on the widespread use of messaging
services as Microsoft Messenger [36].

This importance of different scales is also observed in
the propagation of diseases. Spreaders (humans) can trav-
el long distances following different transportation modes:
long and fast jumps made by flights through the airport
networks; medium range trips are mostly by car or bus
then related mainly to road networks; while short and fre-
quent trips correspond mainly to commutation networks
of public transportation. In this case transportation net-
works at different scales interact. This is how real infec-
tions spread, but a curious example about the relation be-
tween networks of different origins is found in the records
from the web searches during the H1N1 virus propagation.
These searches, made by people with some of the symp-
toms are geolocalized and combined give hints on how the
disease is being propagated.

In the near future researchers on complex social net-
works will focus on networks at different scales, with in-
tertwined different meanings. Probably the picture will
not be that simple. Nowadays we know that networks are
directed, weighted, adaptive, space embedded, interdepen-
dent and so on, and furthermore they are also dynamic.
This includes the dynamics taking place over the links [31,
37], and also the inherent dynamical nature of the con-
nections themselves, with coevolution processes of the dy-
namics on the network and the dynamics of the network
[38,39]. This will introduce further ingredients that the

new science of complex networks will face in the future
[40].

For all these reasons, complex networks theory has to
develop new tools, new measures, and new models that
account for all these new ingredients, namely the interre-
lations between networks of different origins, networks in-
teracting at different scales, cross correlation between dy-
namics on networks and the dynamics of network topolo-
gy, including dependence on patterns of connectivity. Col-
laboration with social scientists and ICT-researchers will
be crucial in developing a new framework for the final
understanding of new social features and behaviors, and
to construct new socially inspired communication resilient
technologies. Also, for more details on current challenges
on complex networks research see the paper on networks
by Havlin et al in this volume [41].

5 Information aggregation and processing.
Social learning

At different social levels, from the family, to international
coalitions, to the global human society, we need to take
collective decisions that shape our future. Taking a good
decision ultimately depends on our ability to aggregate
information that is widely dispersed. This implies mak-
ing choices on what information we pay attention to and
how we discriminate between what we consider relevan-
t or accurate information and what we consider back-
ground noise. These processes depend on very different
issues, some of them strongly technological such as in-
formation propagation and information availability, and
others strongly social such as trust. Needless to say, the
problem of information aggregation takes a completely
new perspective in the light of the societal changes as-
sociated with the new Information and Communication
Technologies, which imply different, faster and broader
ways of communication as described in the next section.
Today the flow of information occurs at multiple tempo-
ral and spatial scales. The compelling task has changed
from accessing information to selecting information avoid-
ing misinformation and disinformation. How do we do this
selection and aggregation, and what are the consequences?

From the above perspective, social learning can be
defined as the ability of a population to aggregate in-
formation [42]. This process drives phenomena like opin-
ion formation or political changes (either smooth or deep
changes). Individual learning follows, in a traditional set-
ting, from global-local competition: the competition be-
tween global information received through media, adver-
tisements, etc. and information learnt and adapted from
one’s social circle. This competition has today different
characteristics due to the new extent and meaning of the
social circle: the ease of interacting with any other indi-
vidual redefines the concept of social circle. An important
change of attitude also exists with respect to news infor-
mation: many people now search actively for news in dif-
ferent ways on the internet instead of passively watching
TV news or habitually reading the same newspaper. The
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challenge is to understand that processes of information
aggregation in a society are not necessarily driven by in-
formation hubs that process information and broadcast it,
but are strongly coupled in a society that aggregates infor-
mation in different collective processes driven by pair-wise,
group and multi-institutional interactions. A clear exam-
ple in this context is the change from the Encyclopedia
Britannica to the Wikipedia.

A basic question is the possible shift from a society
that exploits social learning by aggregated information
and feedback processes to improve this learning, rather
than relying on the traditional specialists or experts. An
important challenge in this context is how to avoid or how
to identify information cascades or rumor-spreading that
amplify errors or misconceptions to a globally accepted
false truth. There is the the wisdom of crowds, but crowds
are not always wise. Also, there is the question of differ-
ent processes for aggregation of information about facts
and about interpretation of the facts, that is the aggrega-
tion of meaning. Collectively these questions are behind
two of ten top social-science questions listed in [57]: How
can we aggregate information possessed by individuals to
make the best decisions?, and How can humanity increase
its collective wisdom?

Information aggregation and processing is not specific
to human societies and is a common process in many oth-
er natural complex systems, as for example in bird flock-
ing or fish schooling. In this context a recent experiment
[58] has demonstrated genuine wisdom of the crowd [59]
showing that larger shoals of fish make more accurate and
faster decisions (avoiding a predator) than smaller shoals.
The design of the experiment is also an example of data
gathering to test modeling predictions or to answer a giv-
en question, beyond the use of raw available data. What
we learn about information processing by decentralized
information communication in natural systems is also a
guide to designing new and alternative information pro-
cessing systems, searching for the emergence of intelligent
behavior from simple interaction rules. Research in Swarm
Intelligence is an example in the direction of implementing
self-organized coordination of many individuals by decen-
tralized information communication.

Finally, knowledge aggregated from complex self-organizing
human or natural systems opens up the challenge of the
implementation of unconventional computational princi-
ples based on complex dynamical systems [60], such as
reservoir computing [61,62] or information processing based
on complex systems dynamics [63].

6 Socio-Technical Systems

The term “socio-technical systems” refers to the inter-
action between technologies and human social behavior.
Psychologists initially recognized this interaction in the
early 50’s. In a pioneering work E.L. Trist and K.W. Bam-
forth [64] studied the social consequences of the adoption
of a new production technology in coal mining leading a
productivity fall. In this general context one can ask what
happens to a society when new forms of communication

appear. This question, which is fundamentally important
and has far-reaching implications, is what the Informa-
tion and Communication Technologies (ICT) has brought
about over the last decade. ICT has radically and un-
foreseeably changed society as a whole. This is true not
only in highly industrialized countries as shown for exam-
ple by the large impact and penetration of mobile phone
networks in developing countries in Africa. At first sight,
these changes can be attributed to the actions of individu-
als and the availability of new channels of communication
that transform basic social processes: (i) face-to-face en-
counters have become less critical than in the past, (ii)
the dynamics of building and strengthening relationships
have evolved by taking advantage of ICT, and (iii) new
ICT-mediated groups and communities have emerged, by
overcoming typical limitations such as distance or lack of
a common platform. In addition, entirely new ways of col-
lective human behaviour have appeared, such as those col-
laborative and sometimes conflicting actions exemplified
by Wikipedia.

However, this description is critically incomplete be-
cause it fails to recognize that individuals, society, and
ICT are deeply intertwined in a dynamic feedback process,
where individuals adopt new communication channels to
form and join groups that change in identity and size,
thereby restructuring the whole of society. Simultaneous-
ly, ICT providers develop new channels of communication,
some of which fail while others become enormously popu-
lar. Indeed, unpredictability is a characteristic feature of
these developments. Popular channels such as WWW and
SMS were not originally designed for the purposes they
serve today. Entirely new platforms for ICT-mediated so-
cial interactions, for example Facebook, have emerged “out
of the blue”. They have gained mass popularity in a very
short time and transformed the social behaviour of in-
dividuals in a number of unexpected ways. An example
is the role of Twitter in mass movements such as Arab
Awakening of 2011 or the Spanish 15M movement [35].
In our view, the fundamental challenge for future social
ICT is to overcome the acute lack of understanding of the
driving forces and mechanisms of this complex system of
interactions between individuals, society, and ICT.

This deficiency requires developing systematic means
of exploring, understanding, modelling and possibly even
controlling systems where ICT is entangled with social
structures. In particular, there is need to focus on the
behavioural patterns, dynamics and driving mechanisms
of social structures whose interactions are ICT-mediated,
from the level of individuals, dyads, and triads to the lev-
el of groups, communities, and large-scale social systems
[65]. The research approach necessarily has to be based
on combined expertise in complex systems, computation-
al analysis and modelling, and social sciences. In contrast
with studies that start from extremely simplified assump-
tions concerning social dynamics and concentrate on find-
ing structural features of social systems, it should be em-
phasized that ICT networks are dynamic systems of inter-
acting humans and groups, and should thus fully utilize
the theories and methods of the social sciences.
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New ICT also puts public goods problems in a new
perspective. An example is water management or waste
management. How do we take decisions on our individ-
ual behavior in these issues in a globally interdependent
society when we receive full information on daily situa-
tion and global consequences? Likewise, smart grids are
now designed so that centralized decisions for better ener-
gy management are taken in the context of data collected
from a large number of distributed sensors. The challenge
is to introduce into the design the adaptive behavior of the
users and to explore self-organized grids in which properly
aggregated data from the sensors is made available online
also to the users [43].

7 Data gathering, Participatory Sensing and
Social Computing

7.1 Citizen Science

The issue of sustainability is now at the top of the political
and societal agenda and is considered to be of extreme im-
portance and urgency [44,45]. There is now overwhelming
evidence that the current organisation of our economies
and societies is seriously damaging biological ecosystems
and human living conditions in the very short term, with
potentially catastrophic effects in the long term. In a re-
cent statement from the head of the European Environ-
mental Agency, there is a realisation that only through
bottom-up actions we can deal with today’s challenges:
“The key to protecting and enhancing our environment is
in the hands of the many, not the few.... That means em-
powering citizens to engage actively in improving their
own environment, using new observation techniques...”
[46].

The enforcement of novel policies may be triggered by
a grassroot approach, with a key contribution from infor-
mation and communication technologies (ICT). Nowadays
low-cost sensing technologies allow the citizens to directly
assess the state of the environment; social networking tool-
s allow effective data and opinion collection and real-time
information spreading processes. In addition, theoretical
and modeling tools developed by physicists, computer sci-
entists and sociologists have reached the maturity to anal-
yse, interpret and visualize complex data sets. A techno-
social system, acts like a lens that captures information
from the environment: one has to explore the peculiari-
ties of having human agents as sensing nodes, the role of
noise sources at different scales, the effect of opinion bias,
information spreading in the community supporting the
techno-social system, network effects, and so forth.

Devices employed in the connection to communica-
tion networks have converged in size and technological
standards. Cell phones have integrated many functions
traditionally accomplished by personal computers. This
progress while being useful, yields also new kind of risks
and challenges such as epidemics of viruses and malfunc-
tions[47]. In turn, computer manufacturers have privileged
products designed for an easy mobile usage, such as new

generation tablets. Moreover, cell phones and PCs incor-
porate sensors of increasing accuracy: GPS sensors, cam-
eras, microphones, accelerometers, thermometers are al-
ready standard equipment in many devices. Networks have
also accompanied this process, by expanding the avail-
ability of an Internet connection throughout daily life.
Open-hardware platforms, such as the well-known pro-
grammable microcontroller based Arduino, will also fa-
cilitate the task of taking an input signal from the envi-
ronment, process it, and deliver it through the Internet at
a low cost.

The large number of sensors deployed is already turn-
ing urban areas into “smart cities”, that is, intelligent and
complex organisms able to process the sensors signals, vi-
sualise them and possibly trigger the automatic execution
of appropriate actions3 (see Michael Batty et al. contri-
bution in this volume). The mobile, powerful, and perma-
nently connected equipment described above makes any
citizen a potential source of sensor data about her/his en-
vironment, with little or no scientific skill required. Partic-
ipatory sensing experiments involve communities of such
individuals in the monitoring of a particular issue, e.g. the
quality of a metropolitan environment [49] or the redevel-
opment of urban areas. This is not entirely new, since
numerous “citizen science” initiatives have been already
launched in areas ranging from ornithology to astronomy,
with or without the help of sensors. A recent trend is rep-
resented by the integration of crowdmapping and partici-
patory sensing through the web and several important ini-
tiatives have been carried out, e.g. to monitor the spread-
ing of the Influenza A virus4 or social mobilization[48]. It
is important to remark how this data gathering activity
is very relevant for the so-called data-driven simulations,
i.e. simulations of complex systems whose predictability
accuracy crucially depends on the interplay between the
goodness of the modeling scheme and the possibility to
monitor several observables to recalibrate in real-time the
evolution of the system under investigation. In addition,
online platform, such as www.pachube.com, have shown in
practice how the data collection activity and its visual rep-
resentation reinforce themselves. The access to both per-
sonal and community data, collected by users, processed
with suitable analysis tools, and re-presented in an ap-
propriate format by usable communication interfaces, has
the potential of triggering a bottom-up improvement of
collective social strategies as well as stimulating funda-
mental shifts in public opinion with subsequent changes
in individual behaviour and pressure on policy maker-
s[50]. Particular events, such as the nuclear crisis following
the 2011 earthquake in Japan, have demonstrated that in-
volving citizens in the environmental monitoring activity
is an effective method to build accurate risk maps. The
participation of users in the monitoring affects both the
resolution and the quality of the data collected. While
traditional sensing generally involves a small number of
highly controlled observation points, distributed sensing

3 http://www.urbanlabs.net/index.php/UrbanLabs$\

_$OS$\_$(English)
4 http://www.influweb.it/
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relies on the possibility of gathering large amounts of da-
ta from many uncontrolled sources, which cannot ensure
high data quality standards; however, by means of statis-
tical methods together with the possibility of storing and
post-processing large datasets, this quality gap with re-
spect to traditional sensing can be overcome. Therefore,
the analysis tools should be able to detect and filter out
deviations due to sensors misuse or to biases introduced
by the users themselves.

7.2 Platforms for ICT-based experiments

In the last few years the Web has been acquiring the sta-
tus of a platform for social computing, able to coordinate
and exploit the cognitive abilities of the users for a giv-
en task. One striking example is given by a series of web
games [51], where pairs of players are required to coor-
dinate the assignment of shared labels to pictures [52].
As a side effect these games provide a categorization of
the images content, an extraordinary diffcult task for ar-
tificial vision systems. More generally, the idea that the
individual, selfish activity of users on the web can pos-
sess very useful side effects, is far more general than the
example cited. The techniques to profit from such an un-
precedented opportunity are, however, far from trivial.
Specific technical and theoretical tools need to be devel-
oped in order to take advantage of such a huge quantity
of data and to extract from this noisy source solid and
usable information. Such tools should explicitly consider
how users interact on the web, how they manage the con-
tinuous flow of data they receive, and, ultimately, what
are the basic mechanisms involved in their brain activi-
ty. In this sense, it is likely that the new ICT-mediated
social platforms, could rapidly become a very interesting
laboratory for social sciences. In particular we expect the
web to have a strong impact on the studies of opinion for-
mation, political and cultural trends, globalization pat-
terns, consumers behavior, marketing strategies. A very
original example is represented by Amazon’s Mechanical
Turk (MT) (https://www.mturk.com/mturk/welcome),
a crowdsourcing web service that coordinates the sup-
ply and the demand of tasks that require human intel-
ligence to complete. It is an online labor market in which
users perform tasks, also known as Human Intelligence
Tasks, proposed by ”employers” and are paid for this.
Salaries range from cents for very simple tasks to a dollar
or more for more complex ones. Examples of tasks range
from categorization of images, the transcription of audio
recordings to test websites or games. MT is perhaps one
of the clearest examples of the so called crowdsourcing
and thousands of projects, each fragmented into small u-
nits of Work, are performed every day by thousands of
users. MT has opened the door for exploration of pro-
cesses that outsource computation to humans. These hu-
man computation processes hold tremendous potential to
solve a variety of problems in novel and interesting ways.
Thanks to the possibility of recruiting thousands of sub-
jects in a short time, MT represents a potentially revo-
lutionary source for conducting experiments in social sci-

ence [53–55]. It could become a tool for rapid developmen-
t of pilot studies for the experimental application of new
ideas. As a starting point for this new idea of experiments,
the blog http://experimentalturk.wordpress.com/ al-
ready presents a review of the results of a series of classic
game theoretical experiments carried out on MT [56]. De-
spite its versatility MT has not been conceived as a plat-
form for experiments. This is the reason why it is impor-
tant to develop a versatile platform to implement social
games. Here the word game is intended as an interaction
protocol among a few players implementing a specific task
and it is used as a synonym of experiment. The develop-
ment of such a platform has to satisfy a certain number of
requirements among which high modularity and flexibility,
synchronous (i.e., real time) and asynchronous interaction
modes, robusteness with respect to heavy loads to process
and store a continuous data flow. The advantage of this
kind of experiments is that every useful piece of infor-
mation and detail of the evolution will be fully available
and leveraged for benchmarking as well as for the mod-
elling activity. Moreover the effects of social interactions
can be observed with a larger statistical basis and in a
more controlled environment. It should be stressed that
these ICT-based experiments are truly general purpose s-
ince through them one can investigate complex phenome-
na in a wide range of disciplines including (but not limited
to) social sciences, economics, psychology and linguistics.
In the framework of European project EveryAware 5 a first
prototype of such a platform is being realized, dubbed Ex-
perimental Tribe (www.xtribe.eu) (ET). ET is intended
as a general purpose platform that allows the realization of
a very large set of possible games. It has a modular struc-
ture through which most of the complexity of running an
experiment is hidden in a complex Main Server and the
experimentalist is left with the only duty of devising the
experiment as well as a suitable interface for it. In this
way most of the coding diffculties related to the realiza-
tion of a dynamic web applications are already taken care
by the ET Server and the realization of an experiment
should be as easy as constructing a webpage with one of
the many online services for it. The benefit is twofold: on
the one hand, it allows virtually any researcher to realize
his own experiment with minimal effort, paving the way
of the use of the web as a standard “laboratory” to per-
form experiments. On the other hand, it can be a strong
“basin of attraction” for people willing to participate to
experiments, making in this way recruitment much more
easier than for single-experiment platforms.

8 Systemic risk, extreme events and
predictability

Extreme events both in nature and society, such as earth-
quakes, landslides, wildfires, stock market crashes, the de-
struction of very tall tower buildings, engineering failures,
outbreaks of epidemics etc. may appear to be surprising
phenomena whose occurrence does not follow any rules.

5 www.everyaware.eu



Maxi San Miguel et al.: Challenges in Complex Systems Science 13

Of course, such kinds of extreme events are rare, but they
influence our everyday lives dramatically. Can we under-
stand, assess, predict and control these events?

Complex systems theory offers a new perspective to
understand the mechanism of the emerging patterns. As a
consequence of natural and social crises, the occurrence of
rare large extreme events are now the focus of extensive
mathematical analysis [66,67].

8.1 Widening the Limits to Prediction of Extreme
Events

It is common to hear questions such as “what is the proba-
bility of having a big earthquake in Iceland within a year?”
or “how large might a possible stock market crash be to-
morrow?”. The study of earthquake eruptions, the onset of
epileptic seizures, and stock market crashes traditionally
are investigated by very different disciplines which differ
very much in their scientific culture. The complex sys-
tem approach emphasizes the similarities and offers some
common methods to predict the behavior of these systems,
and/or understand the inherent limits of their predictabil-
ity [68].

Standard statistical procedures neglect data points de-
viating greatly from others, the so-called called outliers.
Extreme value analysis uses statistical methods to analyze
rarely occurring events. Typically, extreme events occur in
the tails of probability distributions as a function of the
“size” of the events (such as energy, duration etc). Emil
Gumbel (1891-1966) a famous pacifist, contributed sig-
nificantly to the establishment of statistical methods to
describe extreme deviations from an “average” behavior.
As he wrote: “It seems that the rivers know the theory. It
only remains to convince the engineers of the validity of
this analysis.”

Extreme value analysis, a branch of mathematical s-
tatistics, estimates the probability of extreme floods, large
insurance losses, market risk, freak waves, tsunamis, etc.
While the Gumbel distribution shows a light-tail (expo-
nential decay), other classes of “extreme value distribu-
tions” behave differently. Distributions of earthquakes and
avalanches have extreme value statistics described by power-
law tails. These imply that extreme events occur much
more frequently than expected. For example, the crash
of the stock market on Black Monday was a 35σ event,
where σ is the standard deviation of the Dow Jones Index
on a logarithmic scale. Knowledge of the size distribution
of floods, storms, earthquakes is highly important for the
insurance business and for the risk assessment of financial
derivatives.

In the context of power laws, Sornette has suggest-
ed the possibility of “transient organization into extreme
events that are statistically and mechanistically different
to from the rest of their smaller siblings” [79]. He calls
these dragon kings where “Often, dragon kings are asso-
ciated with the occurrence of a phase transitions, bifurca-
tion, catastrophe, tipping point, whose emergence organi-
zation produced useful precursors”.

The theory of complex systems suggests that extreme
events may be predicted by detecting their precursors,
and that there are methodological similarities for analyz-
ing and modeling different “critical events” occurring in
physical, biological and social phenomena. There are ini-
tial promising results and many open problems.

8.2 Dynamical models of extreme events

To be able to control and manage extreme events we should
understand the generating mechanisms (and generative
models) of the phenomena. One possibility is to say that
big earthquakes are nothing else but small earthquakes
that do not stop. The consequence is that these critical
events would inherently be unpredictable, since they don’t
have any precursors. This approach is called self-organized
criticality (SOC) and was championed by Per Bak [69].
Self-organized criticality suggests that the same effect may
lead to small, but also to very large avalanches, so the out-
come is not really predictable. A famous toy model is the
sand-pile model [70].

According to Sornette’s arguments [66] catastrophic
events, or at least a class of them, result from accumu-
lating amplifying cascades. Based on the hypothesis of
this theory of intermittent criticality, many stock mar-
ket crashes are generated by a slow building up of “sub-
terranean forces”, and their precursors may be detect-
ed. Were this hypothesis true, the predictability of these
events may be possible.

Uncompensated positive feedback can be a mechanism
for crashes. Positive feedback seems to be a general mech-
anism [71] behind the eruption of earthquakes, stock mar-
ket crashes, hyperinflation, and epileptic seizures. The lack
of the stabilizing effects of negative feedback mechanism-
s may lead to catastrophic consequences. If there are no
mechanisms to compensate for the effects of higher-than-
linear positive feedback, the processes lead to finite-time
singularities.

In an economy there are many feedbacks that drives it
towards equilibrium between demand and supply. There
are many positive feedbacks, such as those due to our sus-
ceptibility to imitate each other’s behaviour, and these
can lead to explosive growth in prices, followed by the in-
evitable bursting of the bubble. Equilibrium theory works
well when negative feedback effects have stabilizing effects
to positive feedback changes. While in normal situations
the activities of buyers and sellers neutralize each oth-
er, in critical situations there is a cooperative effect due
to the imitative behavior of everybody wanting to buy s-
ince everybody else has already bought, and the positive
feedback is higher-than-linear. Such super-exponential in-
creases, due to irrational expectations, cannot continue
for ever and the increase is unsustainable. Consequently,
it should be followed by a compensatory process, i.e., a
stock market crash.
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9 Control and management of complex global
systems

A pervasive challenge for complex systems science is to
control or manage complex systems. Here is a list of topical
examples:

Financial System Social Unrest Economy
Health Service Famine Relief Epidemics
Electricity Pricing Schemes Demographics Climate

The words “control” and “management” may be used
interchangeably, but many social scientists dislike the word
“control” which carries overtones of authoritarianism and
prefer the word “management” which conveys a more benev-
olent approach.

There is an important distinction to make, however,
between two forms of control. In the strong form of control,
the objective is to make the trajectory of the system follow
some desired track or reach some target [72]. In the weak
form of control, the objective is to make the probability
distribution for the trajectories of the system follow some
desired track or reach some target (in stochastic control,
some integral with respect to the probability distribution
is usually optimised).

This distinction is crucial. As soon as the dynamics
of a deterministic system shows sensitive dependence on
initial conditions (“chaos”), control of a trajectory is like-
ly to require feedback with higher gain than the maximal
Lyapunov exponent (though examples can be made where
arbitrarily small carefully chosen gain matrices suffice),
which may involve unrealistically high observational pow-
er and actuator response. Similarly, control of a stochastic
jump system requires control response time to be shorter
than typical waiting times. In the case of diffusive sys-
tems, a similar criterion is required but depends on the
accuracy with which one wishes to track.

In contrast, chaos or stochasticity are good for making
the probability distribution for the trajectories of a system
relax rapidly to one that is unique. Thus this probabili-
ty distribution may be controlled by much slower obser-
vation/actuator feedback than the individual trajectories.
Also much less detailed observations and controls may suf-
fice, thus avoiding Orwell’s “big brother” nightmare and
making them more acceptable to our “free” society.

This section concentrates on the control of probability
distributions for trajectories. They have been christened
“space-time phases” [73]. In the next few paragraphs we
propose a role for substantial new mathematical develop-
ments. For some background, see [74,75].

The simplest context in which to begin is probabilis-
tic cellular automata. These consist of a network of units
whose states update in parallel in discrete time according
to probability distributions that depend on the current s-
tate of the whole network but, conditional on the current
state, the distributions for different units are independen-
t. In contrast to much of the literature (e.g. [76]), there
is no assumption here that the network is a regular lat-

tice, that the units are identical, or that the dynamics are
autonomous.

Under suitable conditions, the operator representing
the evolution of probability distributions for the state of
the network is an eventual contraction in a suitable met-
ric, and this leads to exponential convergence to a unique
probability distribution for the trajectories. The resulting
space-time phase depends smoothly on parameters of the
model, thus its dependence on feedback control laws can
be studied. Given design objectives, one could then seek
feasible control laws to bring the statistical behaviour of
the trajectories close to the objectives.

Although the above holds for all indecomposable sys-
tems with finitely many units, a more appropriate ap-
proach for large systems with some strong interdepen-
dence of their units is to consider them as part of an
infinite system (just as in equilibrium statistical mechan-
ics). Then the possibility of non-unique space-time phase
emerges. As parameters are varied the system may jump
from one space-time phase to another that is far away.
This is a reflection of the popular notion of “tipping point”.
Even without parameter variation, the original finite sys-
tem may best be described as making random transitions
between two or more such phases. The ways the set of
phases can depend on parameters is a fairly wide open
question: some semi-continuity results hold, but there is
a great need for an analogue of the bifurcation theory
for simple attractors of deterministic dynamical systems,
so that we could understand what are the typical quali-
tative changes in the set of phases. Going further, could
controls be designed to collapse the set of phases into a
desired unique one? This connects with another branch
of deterministic dynamical systems theory called “ergodic
optimisation” in which the aim is to stabilise an invari-
ant probability distribution on an attractor differing from
that naturally chosen.

Once the theory for probabilistic cellular automata is
well developed, it will be natural to seek to extend it to
more realistic classes of system, for example continuous-
time stochastic jump processes, systems of mobile units
where the strength of interaction depends on distance in
physical space, and deterministic systems with sufficiently
chaotic dynamics.

Let us turn now to the examples.

Redesign of financial regulation is urgent. The curren-
t space-time phase has bubbles and crashes all the time,
even if the recent banking crisis has been the worst ever
and national debt crises may overtake that. We need to
move the financial system to space-time phases in which
bubbles are deflated before they grow too big and debt
is not allowed to grow to unserviceable levels. We need
to analyse the effects of proposed policies like separating
retail and investment banking, introducing a tax on all fi-
nancial transactions, imposing time delays on trades. The
models need to include the decision-making behaviour of
real people and their confidence, not just money.

Social order can be very fragile as seen in the recent
riots in England. Almost certainly this is a system with
(at least) two phases: order and anarchy. We must un-
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derstand which management strategies make social order
more stable. The models need to include such factors as
feeling of belonging and feeling one has a future. Stability
is not the only desirable feature, of course; one must al-
so address the nature of the resulting social order. Social
order is a subject with a long history, e.g. [77], and forms
the core of sociology, yet we believe that the time is ripe
for serious advances of a mathematical nature.

Economies are notoriously difficult to manage. The
business cycle and its more extreme versions like recession
correspond to long-range correlations in space and time of
the space-time phase. It might be that this is a natural
result of seeking to maximise productivity, just as seeking
to pass heat faster through a fluid layer leads it to form
convection rolls. Is there some control strategy which can
achieve as much productivity without the large scale oscil-
lations? Is there a control strategy that can achieve it with
close to full employment, a goal that would be fulfilling for
most people and surely could be more productive? One of
the issues this example raises is that planners often re-
quire more than one, often incompatible, objective. Thus
for example, the USA Federal Reserve “sets the nation’s
monetary policy to promote the objectives of maximum
employment, stable prices, and moderate long-term inter-
est rates”, but admits that “tensions among the goals can
arise in the short run”. It may be that these goals are in-
compatible in not just the short run but for ever and, in
the terms of Herbert Simon, have to be satisficed [78].

Several countries are having immense trouble with the
organisation of their health services. Yet simple measures
such as hygiene, prevention and control could substantial-
ly shift the space-time phase to one that is much better.

We are struck by the images of famine in Somalia, but
drought and malnutrition are a regular feature of the prob-
ability distribution there and indeed in other parts of the
world too. Is there a way to manage food production and
distribution that would avoid the extreme of hunger and
the opposite extremes of obesity in the USA and UK? The
problem is linked to demographics and to social unrest
(particularly in the form of civil war). So another moral
emerges here, that it is hard to treat a system in isolation.
Virtually every system has to be considered as open to ex-
ternal influences. This does not cause a great conceptual
shift, but one needs to model the probability distribution
for the external influences and if they are themselves the
results of space-time phases for large complex systems this
is not straightforward.

Epidemiology is a branch of complex systems science
in which control is relatively well developed. Governments
have vaccination policies, movement reduction policies,
and identification policies for tracking down outbreaks of
disease and limiting their spread. These have been learn-
t by bitter experience. Similar ideas apply to the spread
of computer viruses. An area in which there is need for
more work is the spread of ideas: some are deemed good,
such as those has leading to reductions in smoking; while
others are considered bad, such as radicalisation (but this
depends on the belief system and who you ask). In either

case, it is important to understand what makes an idea
spread or not.

Electricity distribution is moving into unknown terri-
tory with widely distributed generation, often from highly
variable sources like wind, and the consequent problems
of balancing supply and demand. The longterm solution
is almost certainly a real-time (and space) pricing signal,
coupled to smart consumption, generation and storage de-
vices which take or provide power when it is advantageous
to them and not otherwise. How to design such a pric-
ing system to run stably is a major question. Stability
here does not mean that there would be no fluctuations;
it means that the space-time phase would not have any
large excursions.

Population, its geographical distribution, age structure
and skill distribution is an important issue. We have now
passed seven billion people worldwide and many of the
tensions in the world can be attributed to there being too
many of us for current technologies to cope with. Possibly
this is a system which has not yet reached a space-time
phase but it may be advantageous to manage it onto one.
For example, a simple way to reduce family size is careers
for women. Thus education leading to more women feeling
they want a career is probably a good longterm solution.
But to model this in any serious way is a challenge.

Lastly, climate is the archetype of a space-time phase.
Although there are crucial aspects such as cloud forma-
tion for which good models are not yet known, one can
hope to devise control strategies that move the climate in
preferred directions. The main currently active control is
CO2 emissions and various geo-engineering controls have
been proposed.

There is clearly an enormous gap between these real
world problems and the nascent theory of management
of complex systems sketched above. The biggest challenge
is to develop models of social systems that capture the
essence of human behaviour.

10 Conclusion: Complexity Science in
FuturICT

The FuturICT Flagship programme is built on the three
pillars of complexity science, social science and ICT. In
this paper we have laid out the main concerns and chal-
lenges in the science of complex systems with special em-
phasis on the Complex Systems route to Social Sciences.

Although there is no agreement on a precise definition
of the word ‘complex’, there is wide consensus on the prop-
erties that can make systems complex. These include them
having: many heterogeneous interacting parts; multiple s-
cales; complicated transition laws; unexpected or unpre-
dicted emergence; sensitive dependence on initial condi-
tions; path-dependent dynamics; networked hierarchical
connectivities; interaction of autonomous agents; self or-
ganisation; non-equilibrium dynamics; combinatorial ex-
plosion; adaptivity to changing environments; co-evolving
subsystems; ill-defined boundaries; and multilevel dynam-
ics. In this context, science is seen as the process of ab-
stracting the dynamics of systems from data. This presents
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many challenges including: data gathering by large-scale
experiment, participatory sensing and social computation,
and managing huge distributed dynamics and heteroge-
neous databases; moving from data to dynamical model-
s, going beyond correlations to cause-effect relationships,
understanding the relationship between simple and com-
prehensive models with appropriate choices of variables,
ensemble modeling and data assimilation, and modeling
systems of systems of systems with many levels between
micro and macro; and formulating new approaches to pre-
diction, forecasting, and risk, especially in systems that
can reflect on and change their behaviour in response to
predictions, and systems whose apparently predictable be-
haviour is disrupted by apparently unpredictable rare or
extreme events.

Undoubtedly great progress is being made, and Euro-
pean scientists are playing a leading role in this field. The
ambitions of the FuturICT Flagship Project are high in-
deed and huge advances in the science of complex systems
will be necessary for them to be achieved. ICT will contin-
ue to be at the heart of Complexity Science and this sci-
ence will generate many new ICT applications. Complex
systems science desperately needs to be better assimilated
with social science and there are enormous challenges and
opportunities in this respect. Despite great progress, the
science of complex systems is still in its infancy and we
must not promise too much. This makes FuturICT very
high risk, but it is hard to see how humankind can face the
future without rapid advances in the science of complex
systems.
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38. M. Zimmermann, V. M. Egúıluz and M. San Miguel, Phys.
Rev. E 69, (2004) 065102
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