
Modeling Location-based Profiles of Social Image Media
using Explorative Pattern Mining

Florian Lemmerich

Artificial Intelligence and Applied Computer Science
University of Würzburg

97074 Würzburg, Germany
lemmerich@informatik.uni-wuerzburg.de

Martin Atzmueller

Knowledge and Data Engineering Group
University of Kassel

34121 Kassel, Germanyl
atzmueller@cs.uni-kassel.de

Abstract—This paper presents an approach for modeling
location-based profiles of social image media based on tagging
information and collaborative geo-reference annotations. We
utilize pattern mining techniques for obtaining sets of tags
that are specific for the specified point, landmark, or region
of interest. Next, we show how these candidate patterns can
be presented and visualized for interactive exploration using
a combination of general pattern mining visualizations and
views specialized on geo-referenced tagging data. We present a
case study using publicly available data from the Flickr photo
sharing application.

I. INTRODUCTION

Given a specific location, it is often interesting to obtain

representative and interesting descriptions for it, e.g., for

planning touristic activities. In this paper, we present an

approach for modeling location-based profiles of social im-

age media by obtaining a set of relevant image descriptions

(and their associated images) for a specific point of interest,

landmark, or region, described by geo-coordinates provided

by the user. We consider publicly available image data,

e.g., from photo management and image sharing applications

such as Flickr1 or Picasa2.

In our setting, each image is tagged by users with several

freely chosen tags. Additionally, each picture is annotated

with a geo-reference, that is the latitude and the longitude

on earth surface where the image was taken. Based on

this information, we try to explore the collaborative tagging

behavior in order to identify interesting and representative

tags for a specific location of interest. This can be either

a point or a region, so that the method can be applied

both for macroscopic (regional) and microscopic (local)

analysis. Furthermore, by appropriate tuning and a more

fuzzified focus, also mesoscopic analyses combining both

microscopic and macroscopic views can be implemented.

Since the problem of identifying interesting and represen-

tative descriptions for a location of interest is to a certain

degree subjective, one can not expect to identify the best

pattern in a full automatic approach. On the other hand,

1http://www.flickr.com
2http://www.picasa.com

considering datasets with thousands of tags manual browsing

through all these tags is not an option.

Therefore, we propose a two step approach for tackling

this problem: The first step uses pattern mining techniques,

e.g., [1], [2] to automatically generate a candidate set of po-

tentially interesting descriptive tags. For this task, we present

three different options to construct target concepts, raning

from microscopic, mesoscopic, to a more macroscopic focus.

In the second step, a human explores this candidate set

of patterns and introspects interesting patterns manually.

However, for an effective search in this setting advanced

methods for the visualization and browsing of the respective

tags sets are required: We propose a set of techniques

for exploring the statistics and spatial distribution of the

candidate tags. These include visualizations adapted from

statistics, from the area of pattern mining, and also domain

specific views developed for spatial data. The presented ap-

proach is embedded into the comprehensive pattern mining

and subgroup discovery environment VIKAMINE [3] which

was extended with a specialized user interface for handling,

presenting and visualizing geo-information. We demonstrate

our approach in a case study using publicly available data

from Flickr using two well-known locations in Germany.

From a scientific point of view, the tackled problem is

interesting as it requires the combination of several distinct

areas of research: Pattern mining, mining social media,

mining (geo-)spatial data, visualization, and interactive data

mining. Our contribution is three-fold: We adapt and ex-

tend pattern mining technique to the mining of combined

geo-information and tagging information. Additionally, we

provide a set of visualizations in this context. Finally, we

provide a case study of the presented approach discussing

the introduced concepts in detail.

The rest of the paper is structured as follows: Section II

describes the mining approach. After that, Section III intro-

duces the visualization techniques. Next, Section IV features

a real-world case study using publicly available data from

Flickr. Section V discussed related work. Finally, Section VI

concludes the paper with a summary and interesting direc-

tions for future research.
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II. LOCATION-BASED PROFILE GENERATION AND

INTERACTIVE EXPLORATION OF SOCIAL IMAGE MEDIA

The problem of generating representative tags for a given

set of images is an active research topic, see [4]. In contrast

to previously proposed techniques, cf. [5], our approach does

not require a separate clustering step. Furthermore, we also

include interactive exploration into our overall discovery

process: The approach starts by obtaining a candidate set

of patterns by applying an automated pattern mining task.

However, since it is difficult to extract exactly the most

interesting patterns automatically we propose an interactive

and iterative approach: Candidate sets are presented to the

user, who can refine the obtained patterns, visualize the

patterns and dependencies between these and can add further

knowledge or adapt parameters for a refined search.

A. Background on Pattern Mining

Since the number of used tags in a large dataset usually is

huge, it is rather useful to provide the user with a targeted set

of interesting candidates for interactive exploration. For this

task we utilize the data mining method of pattern mining,

specifically subgroup discovery [1], [2], [6], [7]. This allows

us to identify not only interesting single tags efficiently, but

also combinations of tags, which are used unusually more

frequently together in a given area of interest.

Subgroup discovery aims at identifying interesting pat-

terns with respect to a given target property of interest

according to a specific interesting measure. In our context,

the target property is constructed using a user-provided

location, i.e., a specific point of interest, landmark, or region,

identified by geo-coordinates.

Pattern mining is thus applied for identifying relations

between the (dependent) target concept and a set of explain-

ing (independent) variables. In the proposed approach, these

variables are given by (sets of) tags that are as specific as

possible for the target location. The top patterns are then

ranked according to the given interesting measure.

Formally, a database D = (I, A) is given by a set

of individuals I (pictures) and a set of attributes A (i.e.,

tags). A selector or basic pattern sela=aj
is a boolean

function I → {0, 1} that is true, iff the value of attribute

a is aj for this individual. For a numeric attribute anum
selectors sela∈[minj ;maxj ] can be defined analogously for

each interval [minj ;maxj ] in the domain of anum. In this

case, the respective boolean function is set to true, iff the

value of attribute anum is in the respective range.

A subgroup description or (complex) pattern p =
{sel1, . . . , seld} is then given by a set of basic patterns,

which is interpreted as a conjunction, i.e., p(I) = sel1 ∧
. . .∧ seld. We call a pattern ps a subpattern (generalization)

of its superpattern (specialization) p, iff ps ⊂ p. A subgroup

(extension) sgp is now given by the set of individuals

sgp = {i ∈ I|p(i) = true} := ext(p) which are covered

by the subgroup description p.

A subgroup discovery task can now be specified by a 5-

tuple (D,T, S,Q, k). The target concept T : I → � specifies

the property of interest. It is a function, that maps each

instance in the dataset to a target value t. It can be binary

(e.g., the instance/picture belongs to a neighborhood or not),

but can use arbitrary target values (e.g, the distance of an

instance to a certain point in space). The search space 2S is

defined by set of basic patterns S. Given the dataset D and

target concept t, the quality function Q : 2S → R maps every

pattern in the search space to a real number that reflects the

interestingness of a pattern. Finally, the integer k gives the

number of returned patterns of this task. Thus, the result of a

subgroup discovery task is the set of k subgroup descriptions

res1, . . . , resk with the highest interestingness according to

the quality function. Each of these descriptions could be

reformulated as a rule resi → t.
While a huge amount of quality functions has been

proposed in literature, cf. [8], the most popular interesting

measures trade-off the size |ext(p)| of a subgroup and the

deviation t − t0, where t is the average value of the target

concept in the subgroup and t0 the average value of the in the

general population. Please note, that for binary t the average

value of t reflects the likelihood of t in the respective set.

Thus, the most used quality functions are of the form

qa(p) = |ext(p)|a · (t− t0), a ∈ [0; 1]

For binary target concepts, this includes for example the

weighted relative accuracy for the size parameter a = 1 or

a simplified binomial function, for a = 0.5.

B. Target Concept Construction

The most critical issue for formulating the location-based

tag mining problem as a pattern mining task is how to

construct a proper target concept. In this paper we propose

and discuss the effects of three different approaches: Using

the raw distance, a parametrized neighborhood function, and

a ”fuzzified” neighborhood function.

First, we could use the raw distance of an image to the

point of interest as a numeric target property. Given latitudes

and longitudes the distance on the earth surface of any

point p = (latp, longp) to the specified point of interest

c = (latc, longc) can be computed by:

d(p) = re · arccos(sin(latp) · sin(latc) + cos(latp) ·
cos(latc) · cos(longc − longp)),

where re is the earth radius.

Using this as the numeric target concept, the task is to

identify patterns, for which the average distance to the point

of interest is very small. For example, the target concept for

an interesting pattern could be described as: ”Pictures with

this tag are on average 25km from the specified point of

interest, but the average distance for all pictures to the point

of interest is 455 km”.
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The advantages of using the numeric target concept is, that

it is parameter-free and can be easily interpreted by humans.

However, it is unable to find tags, which are specific to more

than one location. For example, while for the location of

the Berlin olympic stadium the tag ”olympic” could be a

regarded as specific. However, if considering other olympic

stadiums (e.g., in Munich) the average distance for the tag

”olympic” is quite large. Therefore, we define a second

function: The neighborhood distance requires a maximum

distance dmax to the location of interest. Then, the target

concept is given by:

neighbor(p) =

{
0, if d(p) < distmax

1, else

Tags are then considered as interesting, if they occur

relatively more often in the neighborhood than in the total

population. For example, the target concept for an interesting

pattern in this case could be described as: ”While only

1% of all pictures are in the neighborhood of the specified

point of interest, 33% for pictures with tag x are in this

neighborhood.” The downside of this approach is however,

that it is strongly dependent on the chosen parameter dmax.

If this parameter is too large, then the pattern mining step

will not return tags specific for the point of interest, but for

the surrounding region. On the other hand, if dmax is too

small, then the number of instances in the respective area is

very low and thus can easily influenced by noise.

Therefore, the third considered approach is to ”fuzzify”

the second approach: Instead of a single distance dmax we

define a minimum distance dlmax and a maximum distance

dumax for our neighborhood. Images with a distance smaller

than dlmax are counted fully to the neighborhood but only

partially for distances between dlmax and dumax. For the

transition region between dlmax and dumax any strictly

monotone function could be used. In this paper, we concen-

trate on the most simple variant, that is, a linear function.

Alternatives could be sigmoid-functions like the generalized

logistic curve.

fuzzy(p) =

⎧⎪⎪⎨
⎪⎪⎩

0, if d(p) < dlmax
d(p)−dlmax

dumax−dlmax
, if d(p) > dlmax and

d(p) < dumax

1, otherwise

In doing so, we require one more parameter to chose,

however, using such soft boundaries the results are less

sensible to slight variations of the chosen parameters. Thus,

we achieve a smooth transition between instances within or

outside the chosen neighborhood.

Figure 1 depicts the described options: The fuzzy function

can be regarded as a compromise between the other two

function. It combines the steps for the neighborhood function

with a linear part that reflects the common distance function.

III. VISUALIZATION AND INTERACTIVE EXPLORATION

In our approach, the problem of identifying tags specific

for a region is formulated as a pattern mining task. While

this task can generate candidate patterns, often only manual

inspection by human experts can reveal the most informative

patterns. This is especially the case, when considering that

the interestingness is often subjective and subject to prior

knowledge.

As a simple example, if you knowingly choose a point of

interest in the city of Berlin, the information, that the tag

”berlin” is often used there, will not add much knowledge.

However, if a point is chosen arbitrarily on the map without

any information about the location, then the information that

this tag is used frequently in that area is supposedly rather in-

teresting. Therefore, we consider possibilities to interactively

explore, analyze and visualize the candidate tags and tag

combinations as essential for effective knowledge discovery

in our setting. We consider three kinds of visualizations:

1) Traditional visualizations are mainly used for intro-

spection of candidate patterns. Typical visualizations

include the contingency table, pie charts, and box plots.

An especially important visualization of this category

proved to be a distance histogram. This histogramm

shows on the x-axis the distances d(p) from the location

of interest and on the y-axis the number of images with

the specified tag(s) at that distance.

2) For an interactive exploration of the mined profiles

and the tag sets and comparative visualization we can

utilize various established visualizations for interactive

subgroup mining, cf. [3]. These user interfaces include

for example:

(a) The Zoomtable which is used to browse over on

the refinements of the currently selected pattern.

For numeric targets, it includes the distribution of

tags concerning the currently active pattern. For

the binary ’neighbor’ target concept, it shows more

details within the zoom bars, cf. [3], e.g., showing

the most interesting factors (tags) for the current

pattern and target concept.

(b) The nt-Plot compares the size and target concept

characteristics of many different pattern. In this

ROC-space related plot, e.g., [3], each pattern is

represented by a single point in two dimensional

space. The position on the x-axis denotes the size

of the subgroup, that is, the number of pictures

covered by the respective tags. The position on the

y-axis describes the value of the target concept for

the respective pattern.

Thus, a pattern with a high frequency that is not

specific for the target location is displayed on the

lower right corner of the plot, while a very specific

tag, which was not frequently used is displayed on

the upper left corner.
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Figure 1. The three proposed distance functions d(p), neighbor(p) with a threshold of distmax = 5 and fuzzy(p) with thresholds d− = 3 and d+ = 7
as a function over d(p). It can be observed, that d(p) is (obviously) linear, neighbor(p) is a step function, and fuzzy(p) combines both properties in
different sections.

(c) The Specialization Graph is used to observe the

dependencies between Tag combinations, cf. [9]. In

this graph, each pattern is visualized by a node in

the graph. Each node is represented by a two-part

bar. The total length of these bars represents the

number of cases covered by this pattern, while the

ratio between the two parts of the bar represent

the value/share of the target concept within the

extension of the pattern. Generalization relations

between patterns are depicted by directed edges

from more general to more specific patterns. For

example, the patterns arts and arts ∧ night are

connected by an edge pointing at the latter patterns.

For a more specific exploration of the location-based

profiles of social image media advanced visualization

methods can furthermore be exploited:

(a) The Distance Attribute Map is a view, that allows

for the interactive creation of distance attributes

(d(p), neighbor(p) and fuzzy(p)) by selecting a

point p on a dragable and zoomable map. Fu-

ture improvements could incorporate online search

function, e.g., by using the Google Places API.

(b) The Tag Map visualizes the spatial distribution of

tags on a dragable and zoomable map. Each picture

for a specific pattern is represented by a marker

on the map. Since for one pattern easily several

thousand pictures could apply, we recommend to

limit the number of displayed markers. In our case

study (see Section IV) we chose a sample of at most

1000 markers. In a variant of this visualization also

the distribution of sets of tags can be displayed on a

single map in order to compare their distributions.

(c) The Exemplification View displays sample images

for the currently displayed tag. This is especially

important, since pattern exemplification has shown

to be essential for many applications, e.g., [10].

Obviously displaying alle images could not only

cause performance issues Using this view, the over-

all application can be used to not only browse and

explore the used tags with respect to their geo-

spatial distribution, but also allows for interactive

browsing of the images itself.

The interactive exploration also can utilize background

knowledge concerning the provided tags, which is entered

either in a textual or graphical form. Possibly relevant

knowledge includes the construction of attribute groups or

taxonomies between the concepts, see also [7].
The proposed features were implemented as a plu-

gin for the interactive subgroup discovery environment

VIKAMINE3. For incorporating the traditional plots the

VIKAMINE R-Plugin was used as a bridge to the R4

language for statistical computing.

IV. CASE STUDY

We show the effectiveness of our approach in a case

study on Flickr data. As an exemplary dataset, we used

1.1 million images from Flickr. We selected those that were

taken in 2010 and are geotagged with a location in Germany.

We collected all tags that were used at least 100 times.

For the tagging data, we applied preprocessing methods,

e.g., synonym identification and stemming, e.g., in order

to merge tags such as ”berlin” and ”berljn”, resulting in

about 11,000 tags. In the case studies we show how the

combination of automated pattern mining, visualization and

specialized views for geo-referenced tagging data enables

the identification of tag combinations which are interesting

for the specified location. For pattern mining, we applied the

proposed pattern quality function with a = 0.5 .
We present results for two example locations: The famous

Brandenburger Tor in Berlin and the Hamburg harbor area.

The goal was to enable the identification of tags, which are

representative especially for this region, for people without

knowledge of the respective location.

A. Example 1: Berlin, Brandenburger Tor
In our first example we consider the city centre of

Berlin, more precisely, the location of the Brandenburger

Tor. Expected tags were ”brandenburgertor”, ”reichstag”,

”holocaustmemorial” (since this memorial is nearby). Of

course, also the tag ”berlin” is to be expected.
An exemplary Tag-Map for the tag ”brandenburgertor” is

shown in Figure 2. Figure 3 shows the distance distribution

of the tag to the actual location.

3www.vikamine.org
4http:/www.r-project.org
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Figure 2. Example comparative Tag-Map visualization from the case study (zoomed in): Pictures with tag ”brandenburgertor” are marked with an red
”A”, while pictures for the tag ”holocaust” are marked with a green ”B”

Figure 3. Histogram showing the distances of pictures with the tag ”brandenburgertor” to the actual location. It can be seen in the left histogram that
the tag is very specific, since the vast majority of pictures with this tag is within a 5km range of the location. The histogram on the right side shows the
distance distribution up to 1km in detail. It can be observed that most pictures are taken at a distance of about 200m to the sight.

First we investigated, which candidate tags were returned

by an automatic search using the different proposed target

concept options. The results are shown in the Tables I-V.

Table I shows, that the results include several tags, which

are not very specific for the location of interest, but for

another nearby location, for example the tags ”Potsdam” or

”Leipzig” for cities close to Berlin. This can be explained

by the fact, that these tags are quite popular and the average

distance for pictures with this tag is relatively low in

comparison to the total population even if pictures do not

correspond to the location of interest itself, but for a nearby

location. Since the use of the distance function d(p) does not

allow for parametrization, it is difficult to adapt the search,

such that those tags are excluded.

Tables II-IV show the neighbor function with different

distance thresholds dmax, from 0.1km to 5km. The results

for this target concept are strongly dependent on this thresh-

old. For a very small value of dmax = 0.1km the results

seems to be strongly influenced by some kind of noise, since

the number of pictures in that are gets relatively small. For

example it includes the tags ”metro”,”gleis” (translated: ”rail

track”) or verkehrsmittel (translated ”means of transport”).

While these tags should occur more often in urban areas,

they are by no means the most representative tags for the

area around the Brandenburger Tor. In contrast, the param-

eter dmax = 1km yields results that do meet our expecta-

tions. The resulting tags reflects the most important sites in

that area according to travel guides, including ”reichstag”,

1360



Tag Subgroup Size Mean Target
Distance (km)

berlin 117223 10.48
potsdam 5533 26.83
brandenburg 5911 47.33
charlottenburg 4738 10.90
art 24067 211.28
leipzig 10794 147.87
kreuzberg 3935 14.11
nachbarn 3691 6.16
leute 4547 53.37
strassen 6899 126.83
berlinmitte 3054 4.76

Table I
BRANDENBURGER TOR: THE TOP PATTERNS (MAX. DESCRIPTION SIZE

1) FOR THE COMMON MEAN DISTANCE TARGET FUNCTION.

”brandenburgertor”, ”potsdamerplatz” and ”sonycenter”. We

consider these tags as the most interesting and representative

for this given location. However, we do not assume that this

parameter will lead to the best result in all circumstances.

For example, in more rural areas, where more landscape

pictures with a larger distances to depicted objects are taken,

we expect that a larger value of dmax might be needed.

As shown in Table IV, for a parameter of dmax = 5km
the results show to be tags, which are specific for Berlin

as a whole, but not necessarily for the area around the

Brandenburger Tor. The results include tags like ”tiergarten”,

”kreuzberg” or ”alexanderplatz” which describe other areas

in Berlin.

Tag Subgroup Size Target Share
wachsfigur 322 0.99
madametussauds 177 0.853
celebrity 345 0.435
verkehrsmittel 163 0.313
metro 469 0.277
berlinunderground 158 0.247
kitty 185 0.227
brandenburgertor 1136 0.085
u55 114 0.263
ubahn 4295 0.034
unterdenlinden 573 0.075
gleis 375 0.085
bahnsteig 551 0.058

Table II
BRANDENBURGER TOR: THE TOP PATTERNS (DESCRIPTION SIZE 1) FOR

THE TARGET CONCEPT FUNCTION neigbor, WITH dmax = 0.1 KM.

Finally, Table V shows the fuzzified distance function,

ranging from 1km to 5km as lower and upper thresholds.

The results indicate, that this function is less sensitive to the

parameter choices. Therefore, selecting the parameter is less

difficult since, e.g., distances like 1-5km as in the presented

example can be applied for a micro to meso perspective.

The collected results form a nice compromise between the

results of the neighbor functions.

Tag Subgroup Size Target Share
berlin 113988 0.225
reichstag 2604 0.829
potsdamerplatz 2017 0.797
heinrichböllstiftung 1211 0.988
berlino 4162 0.461
brandenburgertor 1136 0.816
sonycenter 803 0.923
gendarmenmarkt 696 0.885
potsdamer 577 0.88
bundestag 1096 0.611
brandenburggate 643 0.776
brandenburger 401 0.913
friedrichstrasse 558 0.735
unterdenlinden 573 0.705
panoramapunkt 271 1
holocaustmemorial 301 0.93

Table III
BRANDENBURGER TOR: THE TOP PATTERNS (DESCRIPTION SIZE 1) FOR

THE TARGET CONCEPT FUNCTION neigbor, WITH dmax = 1 KM.

Tag Subgroup Size Target Share
berlin 117513 0.749
kreuzberg 3935 0.961
berlino 4162 0.915
berlinmitte 3054 0.906
reichstag 2604 0.976
potsdamerplatz 2017 0.97
hauptstadt 2350 0.892
karnevalderkulturen 1851 0.958
alexanderplatz 1699 0.989
berlinwall 1635 0.914
graffiti 6137 0.525
tiergarten 2497 0.749
heinrichböllstiftung 1211 1

Table IV
BRANDENBURGER TOR: THE TOP PATTERNS (DESCRIPTION SIZE 1) FOR

THE TARGET CONCEPT FUNCTION neigbor AND A THRESHOLD

dmax = 5 KM.

Tag Subgroup Size Mean Target
Share

berlin 117223 0.46
reichstag 2604 0.05
potsdamerplatz 2017 0.05
mitte 4889 0.42
berlinmitte 3054 0.30
heinrichöllstiftung 1211 0.01
hauptstadt 2350 0.34
brandenburgertor 1136 0.10
alexanderplatz 1699 0.28
city 18246 0.76
tiergarten 2497 0.42
platz 2171 0.4
touristen 2815 0.47
nachbarn 3691 0.55
sonycenter 803 0.02

Table V
BRANDENBURGER TOR: THE TOP PATTERNS (DESCRIPTION SIZE 1) FOR

THE ’FUZZIFIED’ TARGET CONCEPT DISTANCE FUNCTION RANGING

FROM 1 KM TO 5 KM.
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Figure 4. An exemplary nt-plot for the location Brandenburgertor, for tags
with a maximum distance of 5km. Tags that were used more often are shown
on the right side of the diagramm, for example, ”streetart” (16), ”graffiti”
(8), or ”urban” (18). Tags that are very specific for the given target concept,
that is, within a 5km area of the Berlin Brandenburger Tor, are displayed
at the top of the diagramm. For example, the tag ”urban” (18) was used
relatively often, but it is not specific for the specified location of interest.
However, tags such as ”heinrichböllstiftung” (10), ”alexanderplatz” (1), or
”potsdamerplatz” (14) are very specific (and interesting) for the specified
location.

B. Example 2: Hamburg Harbor - “Landungsbrücken”

The second example considers the Hamburg harbor, es-

pecially the famous “Landungsbrücken”. For this location,

Figure 5 shows the distribution of several interesting tags in

the zoomtable.

Figure 5. The zoomtable showing some tags from the Hamburg Harbor

For the Hamburg example, we also show complex pat-

terns, i.e., combinations of tags, in the result tables. Table VI

shows the results of applying the standard mean distance

target concept, while Table VII shows the results of the

fuzzified target concept, ranging from 1km to 5km (lower,

upper parameters).

It is easy to see, that these results support the findings

for the Berlin example: The fuzzified approach is more

robust and concentrates on the important tags well, while

the standard approach is suitable on a very macroscopic

scale. It includes tags that are specific for the region, e.g.,

schleswigholstein or relatively close cities such as Lingen
and Hannover.

Tag Subgroup Size Mean Target
Distance (km)

hamburg 29448 9.60
niedersachsen 34672 170.05
berlin 116979 258.34
schleswigholstein 9068 96.75
2010 AND hamburg 5255 7.81
oldenburg 10023 126.02
berlin AND germany 43280 256.95
ostsee 9565 154.41
hannover 8052 138.62
bremen 5656 99.06
lingen 14004 210.85
lingen AND germany 13909 210.82

Table VI
HAMBURG HARBOR: THE TOP PATTERNS (MAX. DESCRIPTION SIZE 2)

FOR THE MEAN DISTANCE TARGET CONCEPT.

Tag Subgroup Size Mean Target
Share

hamburg 29448 0,89
deutschland AND hamburg 6127 0.80
hafen AND hamburg 2163 0.69
hansestadt AND hamburg 1376 0.60
deutschland AND hansestadt 1676 0.68
elbe AND hamburg 1786 0.70
schiff AND hamburg 996 0.58
hafen AND elbe 656 0.52
hansestadt 2906 0.81
ship AND hamburg 882 0.63

Table VII
HAMBURG HARBOR: THE TOP PATTERNS (MAX. DESCRIPTION SIZE 2)

FOR THE ’FUZZIFIED’ TARGET CONCEPT DISTANCE FUNCTION RANGING

FROM 1 KM TO 5 KM.

V. RELATED WORK

This paper combines approaches from three distinct re-

search areas, that is, pattern mining, mining (geo-)spatial

data, and mining social media. First, in contrast to the com-

mon pattern mining approaches, we introduce different target

concept (functions), extending the traditional definition of

target concepts.

Next, (geo-)spatial data mining [11] aims to extract new

knowledge from spatial databases. In this context, often

established problem statements and methods have been

transfered to the geo-spatial setting, for example, considering

association rules [12]. We incorporate geo-spatial elements

constructing distance-based target concepts according to dif-

ferent intuitions. Also, for the combination of pattern mining

and geo-spatial data, we provide a set of visualizations and

interactive browsing options for a semi-automatic mining

approach.

Regarding mining social media, specifically social image

data, there have been several approaches, and the problem of

generating representative tags for a given set of images is an

active research topic, e.g., [4]. [13] also analyze Flickr data

and provide a characterization on how users apply tags and
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which information is contained in the tag assignments. Their

approach is embedded into a recommendation method for

photo tagging, similar to [14] who analyze different aspects

and contexts of the tag and image data. [15] present a method

to identify landmark photos using tags and social Flickr

groups. The apply the group information and statistical

preprocessing of the tags for obtaining interesting landmark

photos.

In contrast to previously proposed techniques, e.g., [5],

our approach does not require a separate clustering step.

Furthermore, we focus on descriptive patterns consisting

of tags that are interesting for a specific location; the

interestingness can also be flexibly scaled by tuning the

applied quality function. In contrast to the above automatic

approaches, we present and extend different visualizations

for a semi-automatic interactive approach, integrating the

user.

VI. CONCLUSIONS

In this paper, we have presented an approach for obtaining

location-based profiles for social image media using ex-

plorative pattern mining techniques. Candidate sets of tags,

which are specific for the target location are mined automat-

ically by an adapted pattern mining search. In an interactive

process, the results can then be visualized, introspected and

refined. We presented a case study using real-world data

from the photo sharing application Flickr considering two

well-known locations in Germany.

For future work, we aim to consider richer location

descriptions as well as further descriptive data besides tags,

e.g., social friendship links in the photo sharing application,

or other link data from social networks. Also, the integra-

tion of information extraction techniques, e.g., [16] seems

promising, in order to add information from the textual

descriptions of the images. Furthermore, we plan to include

more semantics concerning the tags, such that a greater detail

of relations between the tags can be implemented in the

preprocessing, the mining, and the presentation.
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