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Preface

The 2nd International Workshop on Mining Ubiquitous and Social Environments (MUSE 2011) was held
in Athens, Greece, on September 5th 2011 in conjunction with the The European Conference on Machine
Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2011).

Mining ubiquitous and social environments is an emerging area of research, with the focus on ad-
vanced systems for data mining in distributed and network-organized systems. The environments usually
consist of small, heterogeneous, and distributed devices, potentially integrated with the social seman-
tic web. Such contexts create a wide range of new interactions and challenges. Concerning these, the
characteristics of ubiquitous and social mining are in general rather different from common mainstream
machine learning and data mining approaches. The data emerges from potentially hundreds to millions
of different sources, in a collective way. Since these sources are usually not coordinated, they can overlap
or diverge in any possible way. Therefore, the analysis of the collected data, the adaptation of existing
data mining and machine learning approaches, and the engineering and development of novel algorithms
are challenging and exciting steps into this new arena. The goal of this workshop is to promote an inter-
disciplinary forum for researchers working in the fields of ubiquitous computing, social semantic web,
Web 2.0, and social networks which are interested in utilizing data mining in an ubiquitous setting. The
workshop focuses on contributions applying state-of-the-art mining algorithms on ubiquitous and social
data. Papers considering the intersection of the two fields are especially welcome.

This proceedings volume comprises the papers of the MUSE 2011 workshop. In total, we received
nine submissions, from which we were able to accept six submissions, three full papers and three short
papers, based on a rigorous reviewing process. Additionally, the scientific program also featured an invited
talk on the convergence of social and ubiquitous data by Kristian Kersting (Fraunhofer IAIS & University
of Bonn, Germany).

Based on the set of accepted papers, and the invited talk, we set up three sessions. The first ses-
sion discusses the foundations of spatial, sensor, and streaming data. The work Dealing with Collinearity
in Learning Regression Models from Geographically Distributed Data by Annalisa Appice, Michelan-
gelo Ceci, Donato Malerba and Antonietta Lanza discusses the usage of learning regression models in
the context of ubiquitous and distributed data. Next, the paper Spatio-Temporal Reconstruction of Un-
Sampled Data in a Sensor Network by Pietro Guccione, Anna Ciampi, Annalisa Appice, Donato Malerba
and Angelo Muolo describes a resource-aware approach for handling spatial-temporal sensor data. Fi-
nally, A Data Generator for Multi-Stream Data, Zaigham Faraz Siddiqui, Myra Spiliopoulou, Panagiotis
Symeonidis and Eleftherios Tiakas present a data generator for interrelated streaming data, especially
concerning temporal data.

The second session is concerned with ubiquitous and social applications, bridging the two general
topics of the workshop. Thus, the session directly leads to the topic of the invited talk. In The Genera-
tion of User Interest Profiles from Semantic Quiz Games, Magnus Knuth, Nadine Ludwig, Lina Wolf and
Harald Sack provide a unified approach to generate user interest profiles without direct user interaction
out of data from quiz games. After that, the paper Face-to-Face Contacts during a Conference - Commu-
nities, Roles, and Key Players presents an analysis of social and ubiquitous data during a conference, and
features community mining and role characterization in a conference scenario. Concluding the session,
the work Identifying Dense Structures to Guide the Detection of Misuse and Fraud in Network Data, Ur-
sula Redmond, Martin Harrigan and Padraig Cunningham describe techniques for suspicious structures
in network data, specicially those indicating misuse or fraud.

The third session features the invited talk Perception and Prediction Beyond the Here and Now by
Kristian Kersting, in which he presents techniques for handling large data with applications to ubiquitous
and social environments.



We would like to thank the invited speaker, all the authors who submitted papers and all the workshop
participants. We are also grateful to members of the program committee members and external referees
for their thorough work in reviewing submitted contributions with expertise and patience. A special thank
is due to both the ECML PKDD Workshop Chairs and the members of ECML PKDD Organizing Com-
mittee who made this event possible. Special thanks go to Steffen Staab for his help in organizing an
independent review process of a selected publication.

Athens, September 2011 Martin Atzmueller
Andreas Hotho
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Dealing with Collinearity in Learning Regression

Models from Geographically Distributed Data

Annalisa Appice, Michelangelo Ceci, Donato Malerba, and Antonietta Lanza

Dipartimento di Informatica, Università degli Studi di Bari Aldo Moro
via Orabona, 4 - 70126 Bari - Italy

{appice, ceci, malerba, lanza}@di.uniba.it

Abstract. Despite the growing ubiquity of sensor deployments and the
advances in sensor data analysis technology, relatively little attention has
been paid to the spatial non-stationarity of sensed data which is an in-
trinsic property of the geographically distributed data. In this paper we
deal with non-stationarity of geographically distributed data for the task
of regression. At this purpose, we extend the Geographically Weighted
Regression (GWR) method which permits the exploration of the geo-
graphical differences in the linear effect of one or more predictor vari-
ables upon a response variable. The parameters of this linear regression
model are locally determined for every point of the space by processing a
sample of weighted neighboring observations. Although the use of locally
linear regression has proved appealing in the area of sensor data analysis,
it also poses some problems. The parameters of the surface are locally
estimated for every space point, but the form of the GWR regression sur-
face is globally defined over the whole sample space. Moreover, the GWR
estimation is founded on the assumption that all predictor variables are
equally relevant in the regression surface, without dealing with spatially
localized phenomena of collinearity. Our proposal overcomes these lim-
itations with a novel tree-based approach which is adapted to the aim
of recovering the functional form of a regression model only at the local
level. A stepwise approach is then employed to determine the local form
of each regression model by selecting only the most promising predictors
and providing a mechanism to estimate parameters of these predictors
at every point of the local area. Experiments with several geographically
distributed datasets confirm that the tree based construction of GWR
models improves both the local estimation of parameters of GWR and
the global estimation of parameters performed by classical model trees.

1 Introduction

Underpinning geographic thinking is the assumption of spatial non-stationarity,
according to which a phenomenon will vary across a landscape. In a regres-
sion task, where the predictor variables and the response variable are collected
at several locations across the landscape, the major consequence of spatial non-
stationarity is that the measurement of the relationship of the predictor variables
upon the response variable may vary from location to location. The consequence
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of this spatial variability is that of discouraging a spatial analyst from employing
any conventional regression-based model which largely assumes the independence
of observations from the spatial location and ignores the spatial non-stationarity
much to the detriment of spatially varying relationships. In support of this con-
sideration, LeSage and Pace [16] have shown how the application of conventional
regression models leads to wrong conclusions in spatial analysis and generates
spatially autocorrelated residuals. One of the best known approaches to spatial
regression is GWR (Geographical Weighted Regression) [2], a spatial statistics
technique which addresses the challenges of the spatial non-stationarity par ex-
cellence. In particular, GWR maps a local model as opposed to the global linear
model conventionally defined in statistics, in order to fit the relationship between
predictor variables and a response variable. In fact, unlike the conventional re-
gression equation which defines single parameter estimates, GWR generates a
parametric linear equation, where parameter estimates vary from location to lo-
cation across the landscape. Each set of parameters is estimated on the basis
of distance-weighted neighboring observations. The choice of a neighborhood is
influenced by the observation that the positive spatial autocorrelation of a vari-
able arises in almost all spatial data applications [11]. In particular, the positive
spatial autocorrelation of the response variable is that the property of response
takes values at pairs of locations a certain distance apart (neighborhood) to be
more similar than expected for randomly associated pairs of observations [15].

The main motivation for focusing our attention on GWR is that a number
of recent publications has demonstrated that this kind of local spatial model
is appealing in areas of spatial econometrics, including climatology [5], urban
poverty [1, 18], social segregation [17], industrialisation [12], environmental and
urban planning [23] and so on. Although it covers a broad spectrum of applica-
tions, GWR still gives rise to research challenges. In the following, we analyze
the major issues of GWR and define novel local algorithms which definitely take
a step forward in the research on regression in spatial data analysis.

The principal issue we face here is that GWR outputs a single parametric
equation which represents the linear combination of all the predictor variables in
the task and considers the coefficients of the linear combination as parameters for
the local estimation. This means that GWR assumes that predictor variables are
all equally relevant for the response everywhere across the landscape, although
it admits spatially varying parameters. Consequently GWR does not deal with
the spatially localized phenomenon of collinearity. In general, collinearity is a
statistical phenomenon in which two or more predictor variables in a multiple
regression model are highly correlated. In this case, the coefficient estimates
may change erratically in response to small changes in the model or the data. In
conventional regression, the problem of collinearity is addressed by identifying
the subset of the relevant predictor variables and outputting the linear combi-
nation of only the variables in this subset [9]. Based on this idea, we argue that
a solution to collinearity in GWR is to determine a parametric regression sur-
face, which linearly combines a subset of the predictor variables. As we expect
that variables in the subset may vary in space, we define a new spatially lo-
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cal regression algorithm, called GeWET (GEographically W eighted rEgression
T rees learner), which integrates a spatially local regression model learner with
a tree-based learner. The tree-based learner recursively segments the landscape
along the spatial dimensions (e.g. latitude and longitude), according to a mea-
sure of the positive spatial autocorrelation over the response values. In practice,
the leaves of an induced tree represent a segmentation of the landscape into
non-overlapping areal units which spatially reference response values positively
autocorrelated within the corresponding leaf. Owing to the high concentration
of positive spatial autocorrelated response values within a leaf, we assume that
the search for a parametric surface equation associated to the leaf is plausible.
A leaf surface reasonably combines only a subset of relevant predictor variables,
although the parameters of this surface will be locally estimated across the leaf.
In particular, at each leaf, the predictor variables and the local parameters are
learned by adapting the forward stepwise approach [9], defined for a global as-
patial models toward a local spatial model.

Therefore, the innovative contributions of this work with respect to original
formulation of GWR are highlighted as follows:

1. We propose a tree-based learner which permits to segment the landscape in
non-overlapping areal units that group response values which are positively
autocorrelated;

2. We do not assume any global form of the geographically weighted regression
model, but we allow the subset of predictive variables in the model to vary
across landscape;

3. We design a stepwise technique to determine a geographically weighted re-
gression model. The choice of the predictive variables for the model is carried
out by an automatic procedure which permits to select only the most promis-
ing variables and to locally estimate the corresponding parameters;

4. We empirically prove that the proposed method is more accurate than the
traditional GWR and the state-of-art aspatial model tree learner M5’ [25] in
predicting unknown ubiquitous response values spread across the landscape.

The paper is organized as follows. In the next Section we revise related work
on regression in spatial statistics and spatial data mining. In Section 3, we illus-
trate the problem setting and introduce some preliminary concepts. In Section
4, we present our tree-based spatially local regression algorithm. In Section 5 we
describe experiments we have performed with several benchmark spatial data
collections. Finally, we draw some conclusions and outline some future work.

2 Background and Related Work

Several definitions of the regression task have been formulated in spatial data
analysis over the years. The formulation we consider in this work is the tradi-
tional one, where a set of attribute-value observations for the predictor variables
and the response variable are referenced at point locations across the landscape.
So far, several techniques have been defined to perform this task, both in spatial

3



statistic and spatial data mining. A brief survey of these techniques (e.g. k-NN,
geographically weighted regression, kriging) is reported in [22].

In particular, the k-Nearest Neighbor (k-NN) algorithm [20] is a machine
learning technique which appears to be a natural choice for dealing with the
regression task in spatial domains. Each test observation is labeled with the
(weighted) mean of the response values of neighboring observations in the train-
ing set. A distance measure is computed to determine neighbors. As spatial
coordinates can be used to determine the Euclidean distance between two posi-
tions, k-NN predicts the response value at one position by taking into account
the observations which fall in the neighborhood. Thus, k-NN takes into account
a form of positive autocorrelation over the response attribute only.

GWR [2] is a spatial statistic technique which extends the regression frame-
work defined in conventional statistics by rewriting a globally defined model as
a locally estimated model. The global regression model is a linear combination
of predictor variables, defined as: y = α +

∑n
k=1 βkxk + ε with intercept α and

parameters βk globally estimated for the entire landscape, by means of the least
square regression method [9]. Then GWR rewrites this equation in terms of a
parametric linear combination of predictor variables, where the parametric coef-
ficients (intercept and parameters) are locally estimated at each location across
the landscape. Formally, the parametric model at location i is in the form:

y(ui, vi) = α(ui, vi) +

n∑

k=1

βk(ui, vi)xk(ui, vi) + εi, (1)

where (ui, vi) represents the coordinate location of i, α(ui, vi) is the intercept at
location i, βk(ui, vi) is the parameter estimate at the location i for the predictor
variable xk, xk(ui, vi) is the value of the k-th variable for location i, and εi is
the error term. Intercept and parameter estimates are based on the assumption
that observations near one another have a greater influence on each other. The
weight assigned to each observation is computed on the basis of a distance de-
cay function centered on the observation i. This decay function is modified by a
bandwidth setting, that is, at which distance the weight rapidly approaches zero.
The bandwidth is chosen by minimizing the Akaike Information Criteria (AIC)
score [6]. The choice of the weighting scheme is a relevant step in the GWR pro-
cedure. Several different weighting functions are defined in the literature [2], the
more common kernels being the Gaussian and the bi-square weighting functions.

Kriging [4] is a spatial statistic technique which exploits positive autocorre-
lation and determines a local model of the spatial phenomenon. It applies an op-
timal linear interpolation method to estimate unknown response values y(ui, vi)
at each location i across the landscape. y(ui, vi) is decomposed into a structural
component, which represents a mean or constant trend, a random but spatially
correlated component and a random noise, which expresses measurement errors
or variations inherent to the attribute of interest.

A completely different approach is reported in [19], where the authors propose
a spatial data mining technique, called Mrs-SMOTI, which adapts the model
tree induction to spatial data. Mrs-SMOTI performs a tree-based segmentation
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of the training data by considering Boolean tests on the predictor variables and
associates each leaf of the tree with a global regression model built stepwise
by considering only a subset of the predictor variables. The intriguing aspect
of this proposal is that it allows the induction of a model tree which predicts
the response value of a spatial object, by considering predictor variables of ob-
jects belonging to possibly different layers. Indeed, the authors propose using
Mrs-SMOTI to predict the mortality rate of a district (response variable), by
considering as predictor variables both the number of inhabitants of the district
(same layer of the response variable) and the pollution rate of one or more rivers
(new layer) crossing the district, as well as the traffic rate of one or more roads
(new layer) crossing the district. The regression problem considered in this paper
is different from task faced by Mrs-SMOTI, as we assume a single layer. In any
case, the idea of partitioning data and learning a model in a stepwise fashion
at each partition is appealing to solve the problem of linear collinearity also in
spatial domains. We take inspiration from this idea, and significantly extend it.
In fact, we propose to segment landscape in areal units according to Boolean
tests on spatial dimensions and not on predictor variables as traditional model
trees do. The segmentation is opportunely tailored to identify boundaries of areal
units across the landscape which group (positively) autocorrelated response val-
ues. Finally, the regression model associated to each leaf is built stepwise and it
is synthesized to be a locally estimated regression model.

3 Problem Setting and Preliminary Concepts

In this Swction, we define the regression relationship which may arise among
the predictor variables and a response variable observed in a geographically
distributed environment. This relationship is defined on the basis of a field-based
[24] model of the variables which permits to fit the ubiquity of data across the
landscape. The inductive regression task is then formulated to learn a definition
of the regression relationship from a geographically distributed training sample.
We propose to face this task by learning a piecewise definition of a space-varying
(parametric) regression function which met the requirements of spatial non-
stationarity posed by this task without suffering of collinearity problems.

Formally, the regression relationship in a geographically distributed envi-
ronment is denoted as τ(Y, X1, X2, . . . , Xm, U, V ) and defines the (possibly un-
known) space-varying relationship between a response numeric variable Y and
m predictor numeric variables Xj (with j = 1, . . . , m). This relationship rea-
sonably varies across the landscape U × V (e.g. Latitude × Longitude) due to
the phenomenon of spatial non-stationarity. In this formulation and according
to the field-based model, the variation of both the response variable and the
predictor variables across the landscape is mathematically defined by means of
one response function y(·, ·) and m distinct predictor functions xj(·, ·) which are
respectively:

y : U × V �→ Y, (2)

xj : U × V �→ Xj (with j = 1, . . . , m), (3)
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where U × V ⊆ R × R is the range of the Cartesian product U × V ; Y is the
numeric range of response function y(·, ·) (variable Y ); Xj is the numeric range
of the predictor function xj(·, ·) (variable Xj).

An extensional definition D of the relationship τ comprises any set of ob-
servations which is, simultaneously collected across the landscape, according to
both the response function (y(·, ·)) and the predictor functions (xj(·, ·) with
j = 1, . . . , m). The observation i of this set is the data tuple defined as follows:

[i, ui, vi, x1(ui, vi), x2(ui, vi), . . . , xm(ui, vi), y(ui, vi)], (4)

where i is the primary key of the data tuple one-to-one associated to the point
location with coordinates (ui, vi). xj(ui, vi) is the value measured for the predic-
tor variable Xj at the location (ui, vi) across the landscape, while y(ui, vi) is the
(possibly unknown) value measured for the response variable Y at (ui, vi). The
response value y(uj , vj) may be unknown, in this case the tuple i is unlabeled.

The inductive regression task associated to τ can be formulated as follows.
Given a training data set T ⊂ D which consists of a sample of n randomly tuples
taken from D and labeled with the known values for the response variable. The
goal is to learn a space-varying functional representation f : U × V �→ R of the
relationship τ such that f can be used to predict unlabeled responses at any
location across the landscape. Our proposal to address this task consists of a
new learner which receives training data T as input and outputs a piecewise
definition for the space-varying function f which is defined as a geographically
weighted regression tree. This tree recursively partitions the landscape surface
along the spatial dimensions U and V and associates the areal unit at each leaf
with a parametric (space-varying) linear combination of an opportunely chosen
subset of the predictor variables. The parameters of this equation are locally
estimated at each training location which fall in the leaf.

Formally a geographically weighted regression tree f is defined as a binary
tree f = (N, E) where:

1. each node n ∈ N is either an internal node or a leaf node (N = NI ∪ NL)
(a) an internal node n ∈ NI identifies a rectangular surface s(n) over the

landscape U × V . The root identifies the entire landscape U × V ;
(b) a leaf node n ∈ NL is associated with a parametric multiple linear re-

gression function, that, for each location i falling in s(n), allows the pre-
diction of yi according to predictor values and coefficients of the linear
combination as they are locally estimated at the location i;

2. each edge (ni, nj) ∈ E is a splitting edge labeled with a Boolean test over U
or V which allows the identification of the rectangular surface s(nj) ⊂ s(ni).

An example of a geographically weighted regression tree is reported in Figure 1.
Once the geographically weighted regression tree f is learned, it can be used

to predict the response for any unlabeled observation i′ ∈ D. During classi-
fication, the leaf of f which spatially contains i′ is identified. The parametric
function associated to this leaf is then applied to predict the unknown response
value of i′ by taking into account the (ui′ , vi′) localization of i′.
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(a) Sensors possibly installed across the
Earth to obtain geographically distributed
training observations of the Temperature
(response), Humidity and Luminosity (pre-
dictors).

(b) A geographically weighted regression
tree.

Fig. 1. An example of geographically weighted regression trees with spatial splits and
space-varying parametric functions at the leaves (b) learned from spatially distributed
training data (a).

4 The method GeWET

Based on the classical Top-Down Induction of Decision Trees (TDIDT) frame-
work, GeWET recursively partitions the landscape in non-overlapping areal units
and finds a parametric piecewise prediction model that fits the areal units. De-
tails of both the partitioning phase and the regression model construction phase
are discussed in this section. We also explain how geographically weighted re-
gression trees induced by GeWet can be used to predict any unknown response
values across the landscape.

4.1 Splitting phase

The partitioning phase is only based on the spatial dimensions of the data. The
choice of the best split is based on the well known Global Moran autocorrelation
measure [15], computed on the response variable Y and defined as follows:

I =
N

N∑

i=1

N∑

j=1

wij

N∑

i=1

N∑

j=1

wij(yi − y)(yj − y)

N∑

i=1

(yi − y)2

, (5)
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where yi is the value of the response variable at the observation i, y is the
mean of the response variable, wij is the spatial distance based weight between
observations i and j and N is the number of observations.

The Gaussian kernel is an obvious choice to compute the weights:

wij =

{
e(−0.5d2

ij/h2) if dij ≤ h

0 otherwise
, (6)

where h is the bandwidth and dij is the Euclidean spatial distance between
observations i and j. The basic idea is that observations that show high positive
spatial autocorrelation in the response variable should be kept in the same areal
unit. Therefore, for a candidate node t, the following measure is computed:

It =
(ILNL + IRNR)

NL + NR
(7)

where IL (IR) represents the Global Moran autocorrelation measure computed
on the left (right) child of t and NL (NR) represents the number of training
observations falling in the left (right) child of t. The higher It, the better the
split.

The candidate splits are in the form ui ≤ γu or vi ≤ γv, where (ui, vi)
represents the spatial position of observation i. Candidate γu and γv values are
determined by finding nbins − 1 candidate equal-frequency cut points for each
spatial dimension.

Our motivation of using autocorrelation measure as a splitting heuristics is
that we are interested in looking for a segmentation of the landscape in regions of
highly correlated data. Highly autocorrelated data pave the way for computing
accurate GWR regression models [2].

The stopping criterion to label a node as a leaf requires the number of training
observations in each node to be less than a minimum threshold. This threshold
is set to the square root of the total number of training observations, which
is considered a good locality threshold that does not allow too much loss in
accuracy ever for rule-based classifiers [10].

4.2 Model Construction Phase

When the stopping criterion is satisfied, a leaf is built and a parametric linear
regression function is associated to the areal unit associated to the leaf. Param-
eters of this function re estimated at each training location falling in such areal
unit. After the tree is completely built, it defines a piecewice regression function
f in this form:

f(u, v) =

l∑

i=1

I((u, v) ∈ Di) × fi(u, v), (8)

where:
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– l is the number of leaves and D1, D2, . . . , Dl represent the segmentation of
the landscape due to the spatial partition defined by the tree;

– fi(·, ·) is the parametric linear function learned for the areal unit Di;
– I(·) is an indicator function returning 1 if its argument is true and 0 other-

wise.

The parametric linear regression function associated to each leaf is a para-
metric linear combination of a subset of predictor variables. The variables are
selected according to a forward selection strategy. This way, the function is built
stepwise. This process starts with no variable in the function and tries out the
variables one by one, including the best variable if it is “statistically significant”.
For each variable included in the model, parameters of the output combination
are locally estimated across the landscape covered by the leaf areal unit.

To explain the stepwise construction of a parametric regression function we
illustrate an example. Let us consider the case we build a function of the response
variable Y with two predictor variables X1 and X2 and estimate the space-
varying parameters of this function at the location (ui, vi). Our proposal is to
equivalently build the parametric function:

ŷ(uivi) = α(ui, vi) + β(ui, vi) x1(ui, vi) + γ(ui, vi) x2(ui, vi), (9)

through a sequence of parametric straight-line regressions. At this aim, we start
by regressing Y on X1 and building the parametric straight line

ŷ(ui, vi) = α1(ui, vi) + β1(ui, vi) x1(ui, vi). (10)

This equation does not predict Y exactly. By adding the variable X2, the
prediction might improve. However, instead of starting from scratch and building
a new function with both X1 and X2, we follow the stepwise procedure. First
we build the parametric linear model for X2 if X1 is given, that is, x̂2(ui, vi) =
α2(ui, vi) + β2(ui, vi)x1(ui, vi). Then we compute the parametric residuals on
both the predictor variable X2 and the response variable Y , that is:

x′
2(ui, vi) = x2(ui, vi) − (α2(ui, vi) + β2(ui, vi)x1(ui, vi)) (11)

y′(ui, vi) = y(ui, vi) − (α1(ui, vi) + β1(ui, vi)x1(ui, vi)). (12)

Finally, we determine a parametric straight-line regression between paramet-
ric residuals Y ′ on X ′

2, that is,

ŷ′(ui, vi) = α3(ui, vi) + β3(ui, vi)x
′
2(ui, vi). (13)

By substituting the Equations 11-12, we reformulate the latter Equation as
follows:

y(ui, vi) − (α1(ui, vi) + β1(ui, vi)x1(ui, vi)) = α3(ui, vi) + (14)

+ β3(ui, vi)(x2(ui, vi) − (α2(ui, vi) + β2(ui, vi)x1(ui, vi))).
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This equation can be equivalently written as:

ŷ(ui, vi) = (α3(ui, vi) + α1(ui, vi) − α2(ui, vi)β3(ui, vi)) + (β1(ui, vi) − (15)

− β2(ui, vi)β3(ui, vi))x1(ui, vi) +

+ β3(ui, vi)x2(ui, vi).

It can be proved that the parametric function reported in this Equation
coincides with the geographically weighted model built with Y , X1 and X2 (in
Equation 9) since:

α(ui, vi) = α3(ui, vi) + α1(ui, vi) − α2(ui, vi)β3(ui, vi), (16)

β(ui, vi) = β1(ui, vi) − β2(ui, vi)β3(ui, vi) (17)

γ(ui, vi) = β3(ui, vi). (18)

By considering the stepwise procedure illustrated before, two issues remain
to be discussed: how the parametric intercept and slope of each straight line
regression (e.g. ŷ(ui, vi) = α(ui, vi) + β(ui, vi) xj(ui, vi)) are locally estimated
across the landscape and how the predictor variables to be added to the function
are chosen.

The parametric slope and intercept are defined on the basis of the weighted
least squares regression method [9]. This method is adapted to fit the geograph-
ically distributed arrangement of the data. In particular, for each training lo-
cation which contributes to the computation of the straight-line function, the
parametric slope β(ui, vi) is defined as follows:

β(ui, vi) = (LT WiL)−1LTWiZ, (19)

where L represents the vector of the values of Xj on the training observations,
Z is the vector of Y values on the same observations and Wi is a diagonal ma-

trix defined for the training locations (ui, vi)as follows: Wi =

⎛
⎜⎝

wi1 . . . 0
...

. . .
...

0 . . . wiN

⎞
⎟⎠,

where wij is computed according to Equation 6. Finally, the parametric intercept
α(ui, vi) is computed according to the function:

α(ui, vi) =
1

N

∑
zi − β(ui, vi) × 1

N

∑
li. (20)

The choice of the best predictor variable to be included in the model at each
step is based on the maximization of the Akaike information criterion (AIC)
measure. The AIC is a measure of the relative goodness of fitting of a statistical
model. First proposed in [3], AIC is based on the concept of information entropy,
and offers a relative measure of the information lost when a given model is used
to describe reality. It can be said to describe the trade-off between the bias and
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the variance in model construction, or, loosely speaking, between the accuracy
and the complexity of the model. In this work we use the corrected AIC (AICc)
[13] that has proved to give good performance even for small datasets [6]:

AICc = 2N ln(σ̂) + N ln(2π) + N

(
N + p

N − 2 − p

)
, (21)

where N is the number of training observations falling in the current leaf, σ̂ is
the standard deviation of training residuals for the response variable and p is
the number of parameters (number of variables included in the model – degrees
of freedom of a χ2 test). AICc is used to compare regression models, however, it
does not provide a test of a model in the usual sense of testing a null hypothesis;
i.e. AIC can tell nothing about how well a model fits the data in an absolute
sense. This means that if all the candidate models fit poorly, AIC will not give
any warning. To overcome this problem, at each step, once the best variable to be
added to the function has been identified, the new function is evaluated according
to the partial F-test. This allows the evaluation of the statistical contribution of
a new predictor variable to the model [9]. If the contribution is not statistically
significant, the previous model is kept and no additional variable is added to the
regression function.

4.3 Prediction

Once a geographically weighted regression tree T is learned, it can be used for
prediction purposes. Let o be any georeferenced observation with unknown re-
sponse value, then the leaf of T spatially containing o is identified. If a training
parameter estimation exists in this leaf computed for the spatial coordinates
(uo, vo), then these estimates are used to predict y(uo, vo) according to the local
function associated to the leaf; otherwise, the k closest training parameter esti-
mations falling in the same leaf are identified. Closeness relation is computed by
the Euclidean distance. These neighbor parameter estimated are used to obtain
k predictions of the response value. A weighted combination of these responses
is output. Weights are defined according to the Gaussian schema.

5 Experiments

GeWet is implemented in a Java system which interfaces a MySQL DBMS. In
this paper, we have evaluated GeWet on several real benchmark data collections
in order to seek answers to the following questions:

1. How does spatial segmentation of the landscape improve the aspatial seg-
mentation performed by the state-of-art model tree learner M5’?

2. How does the stepwise construction of a piecewise space-varying parametric
linear function solve the collinearity problem and improve the accuracy of
traditional GWR?
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3. How does the boundary bandwidth h and the neighborhood size k affect
accuracy of geographically weighted regression trees induced by GeWET?

In the next subsections, we describe the data sets, the experimental setting and
we illustrate results obtained with these data in order to answer questions 1-3.

5.1 Datasets

GeWET has been evaluated on six spatial regression data collections.

Forest Fires : this dataset[7] collects 512 observations of forest fires in the
period January 2000 to December 2003 in the Montesinho Natural Park, Portu-
gal. The predictor variables are: the Fine Fuel Moisture Code, the Duff Moisture
Code, the Drought Code, the Initial Spread Index, the temperature in Celsius
degrees, the relative humidity, the wind speed in km/h, and the outside rain
in mm/m2. The response variable is the burned area of the forest in ha (with
1ha/100 = 100 m2). The spatial coordinates (U,V) refer to the centroid of the
area under investigation on a park map.

USA Geographical Analysis Spatial Data (GASD): this dataset [21] contains
3,107 observations on USA county votes cast in the 1980 presidential election.
For each county the explanatory attributes are: the population of 18 years of age
or older, the population with a 12th grade or higher education, the number of
owner-occupied housing units, and the aggregate income. The response attribute
is the total number of votes cast. For each county, the spatial coordinates (U,V)
of its centroid are available.

North-West England (NWE): this dataset concerns the region of North West
England, which is decomposed into 1011 censual wards. Both predictor and re-
sponse variables available at ward level are taken from the 1998 Census. They
are the percentage of mortality (response attribute) and measures of depriva-
tion level in the ward, according to index scores such as, Jarman Underprivi-
leged Area Score, Townsend Score, Carstairs Score and the Department of the
Environment Index. Spatial coordinates (U,V) refer to the ward centroid. By
removing observations including null values, only 979 observations are used in
this experiment.

Sigmea-Real : this dataset [8] collects 817 observations of the rate of herbicide
resistance of two lines of plants (predictor variables, that is, the transgenic male-
fertile (SIGMEAMF) and the non-transgenic male-sterile (SIGMEAMS) line of
oilseed rape. Predictor variables are the cardinal direction and distance from the
center of the donor field, the visual angle between the sampling plot and the
donor field, and the shortest distance between the plot and the nearest edge of
the donor field. Spatial coordinates (U,V) of the plant are available.

South California: this dataset [14] contains 8033 observations collected for the
response variable, median house value, and the predictor variables, median in-
come, housing median age, total rooms, total bedrooms, population, households
in South California. Spatial coordinates represent the latitude and longitude of
each observation.
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5.2 Experimental Setting

The experiments aim at evaluating the effectiveness of the improvement of accu-
racy of the geographically weighted regression tree, with respect to the baseline
model tree learned with the state of art model tree learner M5’ and the geo-
graphically weighted regression model computed by GWR. We used M5’ as it
is the state-of-art model tree learner which is considered as the baseline in al-
most all papers on model tree learning. At the best of our knowledge, no study
reveals the existence of a model tree learner which definitely outperforms M5’.
The implementation of M5’ is publicly available in WEKA, while the implemen-
tation of GWR is publicly available in software R. M5’ is run in two settings.
The first setting adds the spatial dimensions to the set of predictor variables
(sM5), the second setting filters out variables representing spatial dimensions
(aM5). The empirical comparison between systems is based on the mean square
error (MSE). To estimate the MSE, a 10-fold cross validation is performed and
the average MSE (Avg.MSE) over the 10-folds is computed for each dataset. To
test the significance of the difference in performance, we use the non-parametric
Wilcoxon two-sample paired signed rank test.

5.3 Results

In Table 1, we compare the 10-fold average MSE of GeWET with the MSE of M5’
(both sM5 and aM5 settings) and GWR . GEWET is run by varying h and k as
we intend to draw empirical conclusions on the optimal tuning of these parame-
ters. The results show that MSE comparison confirms that GeWET outperforms
both M5’ and GWR, generally by a great margin. This result empirically proves
the intuitions which lead us to synthesize a technique for the induction of geo-
graphically weighted regression trees. First, the spatial-based tree segmentation
of the landscape aimed at the identification of rectangular areal units with posi-
tively autocorrelated responses improves the performance gained by the baseline
M5’ which partitions data (and not landscape) according to a Boolean test on
the predictor variables. Second, the stepwise computation of a geographically
weighted regression model at each leaf is able to select the appropriate subset
of predictor variables at each leaf, thus solving the collinearity and definitely
improving the baseline accuracy of traditional GWR. The statistical significance
of the obtained differences is estimated in terms of the signed rank Wilcoxon
test. The entries of Table 2 report the statistical significance of the differences
between compared systems estimated with the signed rank Wilcoxon test. By
insighting the statistical test results, we observe that there are three datasets,
GASD, Forest Fires and South California, where GEWET statistically outper-
forms each competitor independently from the h and k setting (just with South
California and h=20% the superiority of GEWET with respect to its competitor
is not statistically obseravabe). The same primacy of GEWET is observable for
the remaining three datasets, NWE, SigmeaMS and SigmeaMF, when we select
higher values of h (h >= 30%). In general, we observe that a choice of h be-
tween 30% and 40% leads to lower MSE in all datasets. GeWET seems to be
less sensitive to the choice of k due to the weighting mechanism.
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Table 1. 10-fold CV average MSE: GeWET vs M5’ and GWR. GeWET is run by
varying both neighborhood size k and bandwidth h. M5’ is run either by including
the spatial dimensions (sM5) in the set of predictor variables or by filtering them out
(aM5). GWR is run with the option for automatic bandwidth estimation. The best
value of accuracy is in boldface for each dataset.

k 5 5 5 5 10 10 10 10 sM5 aM5 GWR

h 20% 30% 40% 50% 20% 30% 40% 50%

ForestFires 50.44 49.73 49.84 49.99 50.37 49.64 49.76 49.90 87.63 76.88 373.3

GASD 0.10 0.09 0.10 0.10 0.10 0.09 0.10 0.10 0.14 0.14 0.35

NWE 0.009 0.004 0.003 0.003 0.009 0.003 0.003 0.003 0.004 0.004 0.004

sigmeaMS 11.11 5.82 4.19 4.58 18.33 5.48 4.42 4.56 3.98 4.73 5.22

sigmeaMF 3.66 2.24 1.81 1.92 3.67 2.37 1.90 1.92 2.40 1.98 1.98

SouthCalifornia 32.1e5 7.1e4 5.3e4 5.4e4 17.4e5 6.9e4 5.3e4 5.4e4 6.1e4 8.7e4 8.2e4

6 Conclusions

We present a novel spatial regression technique to tackle specific problems posed
by spatial non-stationarity and positive spatial autocorrelation in geographically
distributed data environment. To deal with spatial non-stationarity we decide to
learn piecewise space-varying parametric linear regression functions, where the
parameters are the coefficients of the linear combination which are estimated to
vary across the space. Moreover, we combine local model learning with a tree
structured segmentation approach that is tailored to recover the functional form
of a spatial model only at the level of each areal segment of the landscape. A
new stepwise technique is adopted to select the most promising predictors to
be included in the model, while parameters are estimated at every point across
the local area. Parameter estimation solves the problem of least square weighted
regression and uses the concept of a positively autocorrelated neighborhood to
determine a correct estimate of the weights. Experiments with several benchmark
data collections are performed. These experiments confirm that the induction of
our geographically weighted regression trees significantly improves both the lo-
cal estimation of parameters performed by GWR and the global estimation of
parameters performed by classical model tree learners like M5’. As future work,
we plan to investigate techniques for automating the tuning of both bandwidth
and neighborhood size. Additionally, we plan to frame this work in a streaming
environment, where geographically distributed sensors continuously transmit ob-
servations across the time. This means that, in addition to the space dimension,
the time dimension of data would be also considered.
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Table 2. The signed Wilcoxon test on the accuracy of systems: GeWET vs M5 (sM5 or
aM5); GeWET vs GWR. The symbol “+” (“-”) means that GeWET performs better
(worse) than sM5, aM5 or GWR. “++” (“–”) denote the statistically significant values
(p ≤ 0.05).

k
GeWet vs.

5 5 5 5 10 10 10 10
h 20 30 40 50 20 30 40 50

ForestFires

sM5 ++ ++ ++ ++ ++ ++ ++ ++
aM5 ++ ++ ++ ++ ++ ++ ++ ++
GWR ++ ++ ++ ++ ++ ++ ++ ++

GASD

sM5 ++ ++ ++ ++ ++ ++ ++ ++
aM5 ++ ++ ++ ++ ++ ++ ++ ++
GWR ++ ++ ++ ++ ++ ++ ++ ++

NWE sM5 – ++ ++ ++ – ++ ++ ++
aM5 – ++ ++ ++ – ++ ++ ++
GWR – – - - – – - -

sigmeaMS

sM5 – – + + – – + +
aM5 – - + + – - + +
GWR – + + + – + + +

sigmeaMF

sM5 – + ++ + ++ = ++ +
aM5 – - + + – - + +
GWR – + + + - + + +

SouthCalifornia

sM5 - + ++ ++ - ++ ++ ++
aM5 = ++ ++ ++ = ++ ++ ++
GWR = ++ ++ ++ = ++ ++ ++
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Abstract. Acquisition of information by a pervasive sensor network
raises a fundamental trade-off: higher density of sensors provides more
measurements, higher resolution and better accuracy, but requires more
communication and processing activities. This paper proposes an ap-
proach to significantly reduce the number of transmitting nodes while
maintaining a reasonable degree of accuracy when the measurements of
the inactive nodes are restored. The approach is based on the combina-
tion of a spatio-temporal algorithm to represent the measured data in
trend-based cluster prototypes and a multivariate interpolation, the In-
verse Distance Weighting (IDW), used to estimate measurements where
they are unavailable. The combination of the twos allows both to ef-
ficiently summarize the data stream and to keep enough accuracy in
estimating the unknown measurements at un-sampled locations. Our
method has been evaluated within a real sensor monitoring environment.

1 Introduction

Spatially distributed sensor networks are emerging as a tool for monitoring ubiq-
uitous environments. Each sensor node has computing and storage abilities and
its longevity depends on the smart use of energy. The uncertainty of the applica-
tion environments, the scarcity of communication ability and of the transmission
bandwidth suggest to adopt a meaningful subset of the whole network and to
estimate the un-sampled measures from the available measures as accurately as
possible [11]. In this paper we do not face the problem of how to optimally select
the number and the location of the sensors in a network [6, 5, 9]; instead we focus
on the estimation of missing (un-sampled) values after an efficient summarized
description of the network data stream has been performed.

Although the missing values estimation has been studied in many fields,
from artificial intelligence to data mining and signal processing, sensor networks
pose new challenges since the sensed physical quantity is temporal and spatial
correlated. The idea is to interpolate the missing measures of a network on the
basis of a spatio-temporal aggregate of the observed stream, the trend clusters [2].

17



The stream is segmented in consecutive windows. A trend cluster is a cluster of
sensors which transmit values whose temporal variation, called trend polyline, is
similar along the time of the window. The set of trend clusters which is discovered
over each window is a stream aggregate which reflects spatial correlation and
temporal dependence in data. In [2] authors show that trend clusters can be
discovered in real time and stored in database as a summary of the stream.
Past measures of sensors can be approximately reconstructed from the summary
by selecting, for each window, the cluster they belong to and returning the
associated trend polyline. By performing a step toward, the polyline of each
cluster could be, in principle, associated to every position of the spatial cloud
of the cluster, so that for each missing (or generic) position inside the area the
unknown data would be provided by the polyline itself. This is a naive way of
interpolation which approximates a random position with the polyline of the
nearest cluster. It is a sort of zero-order (or nearest neighbor) interpolation.
However, it is reasonable to think that sensors that lie halfway between two or
more clusters shall measure values which are a combination of the polylines of
these neighbor clusters, due to reciprocal influence of physical measures. The
combination is actually achieved by means of the Inverse Distance Weighting [8]
interpolation which assigns values to un-sampled positions by using a weighted
sum of the known values. The weights are inversely proportional to the distance
of the known points from the un-sampled location, thus giving more importance
to the nearest data. The contribution of this work is the use of the trend cluster
model to provide a reliable interpolation of missing data. The interpolation task
starts from a reduced set of information, the trend clusters, which accounts for
both spatial and temporal data correlation.

The paper is organized as follows. In Section 2 the spatially distributed data
stream, the trend cluster model and the interpolation task are described. Details
of the interpolation algorithm are given in Section 3. Results on a real sensor
network stream and discussion are exposed in Section 4; then conclusions follow.

2 Problem Formulation

2.1 Snapshot model and Window Model

The snapshot model [1], allows to represent geo-referenced data by means of
2-D points of an Euclidean space and timestamped on a regular time axis. By
considering a time domain T which is absolute, linear and discrete, a snapshot
Di models the set of the geo-referenced measurements which are timestamped
with ti (ti ∈ T). The spatial arrangement of Di is modeled by means of a
field function [7] defined as fi : Ki 7→ Attribute domain. The field domain Ki

(Ki ⊆ R2) is the set of the 2-D points geo-referencing the sampled sensors which
transmit at ti. This way, a sensor network stream D is a stream of snapshots
(D = D1, D2, . . . Di, ...) which continuously feed a server at the equally spaced
time points of T.

The count-based window model [3] decomposes D into consecutive windows
of w snapshots arriving in series. Windows are enumerated such that the i-th
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window comprises w snapshots timestamped in the time interval [t(i−1)w+1, tiw].
Snapshots can be locally enumerated in the owner window. In this formulation,
D is seen as a stream of windows of snapshots. Formally,

D1
1, D

1
2, . . . , D

1
w︸ ︷︷ ︸

W1

, D2
1, D

2
2, . . . , D

2
w︸ ︷︷ ︸

W2

, . . . , Di
1, D

i
2, . . . , D

i
w︸ ︷︷ ︸

Wi

, . . .

In this window-based representation of the stream, a snapshot is denoted
as Di

n, where the index n ranges between 1 and w and enumerates a snapshot
within the owner window Wi. The index i is to denote the i-th window of the
the stream.

2.2 Trend Cluster Model

A trend cluster is a cluster of spatially close sensors which transmit numeric val-
ues whose temporal variation, called trend polyline, is similar over a time hori-
zon. Formally, a trend cluster is the triple [ time horizon, spatial cluster, trend
polyline]. The time horizon is the range of time of a count-based window. The
spatial cluster is the set of the spatially close sources which transmit values
whose temporal variation is similar along the time horizon of the window. The
trend polyline is the representation of the temporal variation of the measure-
ments in the cluster. It is represented by a series of w median values computed
at the consecutive time points of the window. Formally,

trend polyline = 〈vi1[tc], vi2[tc], . . . , viw−1[tc], v
i
w[tc]〉 (1)

where vij is the median of the measurements transmitted at the time point
t(i−1)w+j (j = 1, 2, . . . , w) by sources grouped into the spatial cluster tc.

The spatial closeness between sources is computed according to some user-
defined distance relation (e.g., nearby, far away) implicitly defined by the latitude-
longitude coordinates of the sensors. The similarity in the temporal variation of
the clustered sources depends on a user-defined parameter which is called trend
cluster similarity threshold and is denoted by δ. According to δ, each sensor
grouped in a cluster transmits values along the window horizon which differs
at worst δ from the trend polyline of the cluster. The differences are computed
time point-by-time point by resorting to the Euclidean distance. The algorithmic
details concerning the trend cluster computation are reported in [2].

2.3 Interpolation Task

The goal of a spatial interpolation task is to generate new data on un-sampled
positions exploiting the existing known values. The main hypotheses to have
reliable estimates is that the physical measure is spatially correlated (near nodes
exhibit similar observations) and that this similarity is as high as sensors are close
each others, i.e. the power spectral density of the process implied by measures is
band-limited [4]. Under these hypotheses the interpolation is the natural choice
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to solve the problem of finding data at un-sampled locations. The idea is to
interpolate along the windows by using the aggregated measures (the polylines)
provided by the trend clusters which are expected to be close to the un-sampled
locations. However, since each polyline refers to a group of nodes (the cluster),
we must assign it to a specific spatial location, that we call cluster centroid.

The cluster centroids are not equally spaced on the region; for this reason we
use an interpolation method that accounts for irregular sampling, the IDW in-
terpolation. This method allows to determine the interpolated value in a generic
position u = (x, y) by means of a weighted average of the values at the known
points. The weights are proper-defined functions of the distance between u and
each known cluster centroid.

3 The Trend Cluster based Interpolation Algorithm

Once the trend clusters are known for a window, the interpolation is performed
in two steps: (1) for each cluster of nodes the centroid position, (x̂tc, ŷtc) is
computed and it is assigned to the polyline of the trend cluster tc; (2) for each
un-sampled location u = (xu, yu) its interpolated polyline along the window
is computed by properly combining the polylines associated to the neighbor
centroids.

Centroid Computation. Given a trend cluster tc which groups both a set of
c sensors with coordinates {(x1, y1), (x2, y2), · · · , (xc, yc)} and a trend polyline
〈vi1[tc], vi2[tc], . . . , viw[tc]〉, the location ĉtc = (x̂tc, ŷtc) of the centroid of tc is
computed as follows:

x̂tc =
1

c

c∑

j=1

xj ŷtc =
1

c

c∑

j=1

yj (2)

By means of Eq. (2) we perform the geo-referencing of a cluster’s trend polyline
to a specific location, i.e. that of the cluster centroid.

Interpolation. The Inverse Distance Weighting (IDW) is used to interpolate
the unknown measure at any generic position u = (xu, yu) by means of a weighted
average of the measures associated at the known centroid points. The weights
are properly-defined functions of the distance between u and each centroid. For
each window, let N be the number of centroids. For each time-point ti of the
window (i = 1 · · ·w), the interpolated measure vi[u] at the un-sampled position
u and at the time point ti is computed as follows:

v̂i[u] =

N∑

tc=1

w(u, ĉtc)vi[tc]

N∑

tc=1

w(u, ĉtc)

. (3)
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where the denominator normalizes the sum of weights.
The weights w(u, ĉtc) are computed as the inverse of a power of the distance

between u and ĉtc, that is:

w(u, ĉtc) = (d(u, ĉtc))
−p (4)

In a geographical context, it is natural to use the Euclidean distance to
define d(u, ĉtc). The concept behind Eq. (3) is that the interpolation at an un-
sampled position is a function of all the known values and depends from them
in a relation inversely proportional to the distance, i.e. the nearer is a known
value the stronger is its influence. The power of this influence is driven by the
power parameter p, which is a positive and real number. If the value of p is less
than the dimensionality of the problem (in our context the dimensionality is 2)
the interpolation is rather dominated by the distant points. On the other hand,
greater values of p give more influence to the values closer to the un-sampled
position; for p → ∞ the IDW method provides basically the same results of the
nearest neighbor interpolation.

Although in Eq. (3) all the cluster centroids are considered to compute the
interpolated value, we expect that a maximum correlation distance exists and the
too distant centroids should not be included in the interpolation. Thus, we set a
bound such that the centroids contribute to interpolation only if they are inside
a given sphere. The center of this interpolation sphere is the un-sampled position
and the radius is a parameter Rc. The undesirable consequence of setting Rc is
that a different number of centroids is used for different un-sampled locations;
but, on the other hand, this is the unavoidable effect of dealing with irregularly
sampled data. Where data are more dense interpolation shall be more reliable,
fading and breaking off in areas where the known values are too far. Under these
consideration we re-define (4) as follows:

w(u, ĉtck) =

{
(d(u, ĉtck))

−p if d(u, ĉtc) ≤ Rc

0 otherwise
. (5)

The IDW interpolation provides a method which works both online and of-
fline. The result is a trade off between accuracy (better than nearest neighbor)
and computational load, which would be higher with statistical methods. On the
other hand, IDW result is a function of all the parameters introduced before.
These parameters should be set such that the gap between real and interpolated
measures, in a statistical sense ( i.e. null average and minimum root mean square
of the error ε = v − v̂) is minimum. A statistical model computation should be
performed but it would affect computation load. Thus, we opted for a qualita-
tive setting of parameters, which are dependent on the specific domain of the
measured feature.

4 Experimental Results

Experiments are performed on the South American Air Temperature dataset
[10]. Our aim is to evaluate the accuracy of the proposed technique when just a
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subset of sensors transmit measures and IDW interpolation is used to retrieve
the measures of un-sampled sensors. Experiments are run on Intel®Core(TM)
2 DUO CPU E4500 @2.20GHz with 2.0 GiB of RAM Memory, running Ubuntu
11.04.

Sensor Network Description. The South American Air Temperature network
[10] was used to collect monthly-mean air temperature measurements (in oC)
between 1960 and 1990; available data are provided as interpolated over a 0.5deg
by 0.5deg of latitude/longitude grid. The grid nodes are centered on 0.25deg for
a total of 6477 sensors. The number of nearby stations that influence a grid-
node estimate is 20 in average. The temperature values range between −7.6 and
32.9oC.

Experimental Settings. We randomly choose a subset of sensors of the network
which are considered switched-on and we use SUMATRA [2] to learn trend
clusters from these sensors. Then, we use trends and centroids of the clusters
to interpolate the unknown temperature measure for the sensors which have
been considered switched-off. We use the experimental setting described in [2],
i.e., window size w = 12 and trend similarity threshold δ = 4oC. The IDW
interpolation is performed by setting p = 3. The IDW interpolation is compared
to the 1-Nearest Neighbor interpolation (1NN) that corresponds to simply assign
the trend polyline of the closest centroid to each switched-off sensor.

Accuracy We evaluate the accuracy of the proposed method by means of the
root mean square error (rmse) which is found when the interpolated value is
used to approximate the real value.

We first evaluated the interpolation accuracy by varying the percentage σ
of switched-off nodes in the network (σ = 5%, 10%, 20%, 30%). It is noteworthy
that when the number of switched-off nodes increases a sensor may loose most
of its neighbors in the network. In [2] each sensor is connected to those located
in the d◦ × d◦ around cells of the grid with d = 0.5. In this set of experiments,
we considered d ranging among 1, 2 and 4 and Rc = 20. The rmse performed by
IDW and 1-NN is plotted in Fig. 1(a) and Fig. 1(b), respectively. The results,
plotted by varying d and σ, confirm that IDW is always more accurate than 1-
NN and basically insensible to σ. Additionally the rmse of IDW remains below δ
(δ = 4 in the experiments), i.e. the theoretical upper bound of the summarization
error performed by SUMATRA. The IDW rmse increases with d, as expected:
lower values of d better describe the real network relation, thus, as d increases,
the quality of neighbor relation becomes weaker. On the other hand, keeping
d low causes a higher cluster fragmentation (and so a major number of bytes
to describe the clusters summarization), particularly as σ increases. We hence
evaluated how the IDW rmse is affected by Rc. The rmse of IDW interpolation
is then plotted in Fig. 1(c) for Rc = 5, 10, 20 when d = 1. What we found is
that rmse decreases as Rc increases, as a higher number of cluster centroids
is used. Higher Rc makes the interpolation more accurate and this confirms
our hypothesis of spatial correlation in data. Final considerations concern the
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analysis of the computation time. In Fig. 1(d) are reported the times spent in
average to discover the trend clusters over each window, to store them in the
data warehouse and to interpolate the missing values. The computation time
are collected by varying σ and d and setting Rc = 20. Results show that the
summarization/interpolation task can be performed on real-time because the
time to process a window is lower, in average, than the time needed to buffer a
new window.

(a) IDW rmse (b) I-NN rmse

(c) IDW vs 1-NN RMSE (d) SUMATRA/IDW Learning
Time

Fig. 1. RMSE: IDW(a) and 1-NN (b) by varying distance d to construct the network
and percentage σ of switched-off nodes. IDW vs 1-NN (c) by varying Rc, but setting
σ = 5% and d = 1. Learning time (d): Average time [msec] spent to perform algo-
rithm (SUMATRA trend cluster performed on switched-on sensors and interpolation
on switched-off). Results refer to the averaged measures over the 31 windows of the
entire dataset.
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5 Conclusion

Trend cluster represents an effective model to summarize spatio-temporal data
of a sensors network, as reconstruction of original data from the summaries
stored in a data warehouse is efficient and reliable (in term of accuracy). A
spatial irregular interpolation provides the possibility to reconstruct the values
in missing locations. Results show that the method is efficient and accurate,
at least w.r.t. 1-NN method. Interpolation can be driven by changing a set of
parameters that should be properly assessed for each case-study under exam.
The proposed method provides meaningful results with a significant percentage
of missing nodes w.r.t. the whole network. Assessment of the IDW parameters
and of the relation between distance, radius and percentage of switched-off nodes
is anyway worthy of further investigation.

Acknowledgments. The paper is realized with the contribution of “Fondazione
Cassa di Risparmio di Puglia”.
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Abstract. This paper analyzes profile data and contact patterns of conference
participants in a social and ubiquitous conferencing scenario: We investigate
user-interaction and community structure of face-to-face contacts during a
conference, and examine different roles and their characteristic elements. The
analysis is grounded using real-world conference data capturing descriptive
profile information about participants and their face-to-face contacts.

1 Introduction

During the last decade, Web 2.0 and social semantic web applications have already
woven themselves into the very fabric of everyday life. Many applications, e.g.,
social networks (Facebook, LinkedIn, Xing) or Web 2.0 messaging tools (Twitter)
are extensively used in various application domains. However, conferences usually
do not make use of more dynamic and community-based features, e.g., schedules are
commonly arranged in a static way. Knowledge discovery techniques could often be
applied ahead of the conference, e.g., for recommending reviewers to submissions
or later talks to participants. Furthermore, dynamic adaptions are enabled during the
conference by ubiquitous computing approaches, e.g., based on RFID-tokens.

In this paper, we focus on the analysis of social data and contact patterns of
conference participants: We consider communities of participants and their visited
talks. Additionally, we analyze face-to-face contacts of conference participants during
the duration of the conference. We examine different explicit and implicit roles of
the participants, validate the community structures, and analyze various structural
properties of the contact graph.

Our contribution is three-fold: We present an in-depth analysis of the social relations
and behavioral patterns at the conference, identify characteristics of special roles and
groups, and sketch approaches on how the mined information can be implemented in
social conferencing applications. We focus on profiles of the participants and their
face-to-face contacts. Considering these, we analyze community structures during
the conference. Additionally, we consider the special interest groups as given by
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a participant during registration in comparison to the emerging communities at the
conference. Finally, we perform a description and characterization of different roles
and groups, e.g., organizers and different subcommunities at a conference, in order to
identify characteristic factors.

The rest of the paper is structured as follows: In Section 2 we discuss some social
applications for conferences, and issues of privacy and trust. After that, Section 3
considers related work. Next, Section 4 provides the grounding of our approach
presenting an in-depth analysis and evaluation of real-world conference data. Finally,
Section 5 concludes the paper with a summary and interesting directions for future
research.

2 Social Conferencing

During a conference, participants encounter different steps and phases: Preparation (be-
fore the conference), during the actual conference, and activities after the conference.
Appropriate talks and sessions of interest need to be selected. Talks and discussions, for
example, need to be memorized. Additionally, social contacts during a conference are
often essential, e.g., for networking, and are often revisited after a conference, as are the
visited talks. All of these steps are supported by the CONFERATOR system: It is under
joint development by the School of Information Sciences, University of Pittsburgh
(conference management component, as a refinement of the Conference Navigator [1])
and the Knowledge and Data Engineering group at the university of Kassel (social and
ubiquitous PEERRADAR3 component).

A first prototype of CONFERATOR [2], developed by the Knowledge and Data
Engineering group was successfully applied at the LWA 2010 conference at the
University of Kassel in October 2010. The applied system is based on the UBICON
framework featuring the PEERRADAR application for managing social and ubiq-
uitous/real contacts. This is implemented by embedding social networks such as
Facebook, XING, and LinkedIn. Furthermore, advanced RFID-Proximity technology
for detecting the location of participants and contacts between conference participants
is implemented utilizing active RFID proximity-tags, cf., [3]. The system also provides
the conference information using a visual browser for managing the conference content
and phases, i.e., by providing information about talks and the conference schedule, in
preparation for integrating the Conference Navigator application.

In CONFERATOR, privacy is a crucial issue: A variety of user data is collected and
therefore appropriate steps for their secure storage and access were implemented.

CONFERATOR implements privacy measures using a refined trust system: It features
several privacy levels (private, trusted, public) for organizing access to different items,
e.g., location, profile, and contact information. In addition, in the analysis we aim at
providing implicit k-anonymity in the presentation and discussion, since we provide
results at the level of special interest groups, or provide detailed results only targeting
groups containing at least five participants.

3 http://www.ubicon.eu
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3 Related work

Regarding the tracking and analysis of conference participants, there have been several
approaches, using RFID-tokens or Bluetooth-enabled devices. Hui et al. [4] describe
an application using Bluetooth-based modules for collecting mobility patterns of
conference participants. Furthermore, Eagle and Pentland [5] present an approach for
collecting proximity and location information using Bluetooth-enabled mobile phones,
and analyze the obtained networks.

One of the first experiments using RFID tags to track the position of persons on
room basis was conducted by Meriac et al. (cf., [6]) in the Jewish Museum Berlin
in 2007. Cattuto et al. [7] added proximity sensing in the Sociopatterns project4.
Barrat et al. [8] did further experiments. Alani and colleagues, e.g., [3], also added
contact information from social online networks. Our work uses the same technical
basis (RFID-tokens with proximity sensing), on top of the Sociopatterns project, which
allows us to verify their very interesting results independently. Furthermore, in this
paper we significantly extend the analysis, since we are able to use further techniques
in order to characterize different roles, communities and participant relations.

The conference navigator by Brusilovsky [1] allows researchers attending a confer-
ence to organize the conference schedule and provides a lot of interaction capabilities.
However, it is not connected to the real live activity of the user during the conference.
In the application, we measured face-to-face conctacts, increased the precision of
the localization component compared to previous RFID-based approaches, and linked
together tag information and the schedule of a workshop week. Furthermore, we
implemented a light-weight integration with BibSonomy and other social systems used
by participants. This is the basis for new insights into the behavior of all participants.

Thus, in comparison to the approaches mentioned above, we are able to perform a
much more comprehensive evaluation of the patterns acquired in a conference setting,
since our data provides a stable ground truth for communities (the special interest
groups). This provides a grounding not only considering the verification of the structural
properties of the mobility patterns, but also given by the roles, and communities.

Considering different “roles” of nodes and finding so called “key actors” has
attracted a lot of attention. Ranging from different measures of centrality (cf., [9])
to the exploration of topological graph properties [10] or structural neighborhood
similarities [11]. We focus on a metric of how much a node connects different
communities, cf., [12], since it allows to consider initially given community structures.

4 Grounding

In this section, we present an analysis of the collected conferencing data. After
introducing some preliminaries, we first discuss a grounding of the communities given
through the assignment of participants to special interest groups. After that, we consider
explicit roles (Prof., PostDoc, PhD-Student, Student) and organizing roles (organizers
vs. regular participants).

4 http://www.sociopatterns.org

27



4.1 Preliminaries

In the following section, we briefly introduce basic notions, terms and measures used
throughout this paper. We presume familiarity with the concepts of directed and
undirected Graphs

G = (V,E)

for a finite set V of nodes with edges (u, v) ∈ V × V and {u, v} ⊆ V respectively.
In a weighted graph, each edge is associated with a corresponding edge weight,

typically given by a mapping from E to R. We freely also use the term network as a
synonym for a graph. For more details, we refer to standard literature, e.g., [13,14].

In the context of social network analysis, a community within a graph is defined as
a group of nodes such that group members are densely connected among each other
but sparsely connected to nodes outside the community [15] (based on the underlying
observation that individuals tend to interact more tightly within a group of somehow
related persons). Community structure was observed in several online social networks
[16,17] and is sometimes also called “virtual community” [18].

For formalizing and assessing community structure in networks, this work focuses
on the modularity measure [15] which is based on comparing the number of edges
within a community to the expected such number given a null-model (i.e., a randomized
model). Thus, the modularity of a community clustering is defined to be the fraction of
the edges that fall within the given clusters minus the expected such fraction if edges
were distributed at random.

This can be formalized as follows: The modularity Mod of a graph clustering is
given by

Mod =
1

2m

∑

i,j

(
Ai,j −

kikj
2m

)
δ(Ci, Cj) ,

where A is the adjacency matrix, Ci and Cj are the clusters containing the nodes i
and j respectively, ki and kj denote the degree of i and j, δ(Ci, Cj) is the Kronecker
delta symbol that equals 1 if Ci = Cj , and 0 otherwise; m = 1

2

∑
ij Aij is the total

number of edges in the graph.
A straightforward generalization of the above formula to a modularity measure

wMod in weighted networks [19] considers Aij to be the weight of the edge between
nodes i and nodes j, and replaces the degree ki of a node i by its strength str(i) =∑
j Aij , i. e., the sum of the weights of the attached edges.

4.2 Available Data

For capturing social interactions, RFID proximity tags of the Sociopatterns project
were applied. 70 out of 100 participants volunteered to wear an RFID tag which
(approximately) detected mutual face-to-face sightings among participants with a
minimum proximity of about one meter. Each such sighting with a minimum length
of 20 seconds was considered as a contact which ended when the corresponding tags
did not detect an according sighting for more than 60 seconds.
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Using the contact data we generated undirected networks LWA[≥i]∗, LWA[≥i]Σ ,
and LWA[≥ i]#. An edge {u, v} is created, iff a contact with a duration of at least i
minutes among participants u and v was detected (i = 1, . . . , 15). For i ≥ 5[minutes],
for example, we can filter out “small talk” conversations. In LWA[≥i]# the edge {u, v}
is weighted with the number of according contacts, in LWA[≥i]Σ it is weighted with
the sum of all according contact durations whereas LWA[≥i]∗ is unweighted.

Table 1 contains some statistics for LWA[≥ i]∗, i = 0, 5, 10. The diameters and
average path lengths coincide with those given in [8] for the Hypertext Conference 2009
(HT09). Figure 1 shows the degree and contact length distribution for LWA[≥0]∗. The
latter exhibits characteristics comparable with those given for HT09, whereas the degree
distributions differ by exhibiting two peaks – one around 10 and one around 20 – in
contrast to only one peak around 15 for HT09. We hypothesize that this deviation is due
to a more pronounced influence of the conference organizers at LWA 2010 in relation
to the total number of participants (approx. 15% of the participants in LWA[≥0]∗ were
organizers). This hypothesis is supported by removing all organizers from LWA[≥0]∗
and recalculating the degree distribution, yielding a single peak in the interval [15, 20).

Other statistics (e. g., strength distribution, among others) also suggest evidence for
structural similarities among HT09 and LWA 2010. Therefore, we conclude, that LWA
2010 was a typical technical conference setup, and results obtained at the LWA 2010
are expected to hold in other conference scenarios with similar size, too.

Table 1. High level statistics for different networks: Number of nodes and edges, Average
degree, Average path length APL, diameter d, clustering coefficient C, number and size of the
largest weakly connected component #CC and |CC|max respectively. Additionally the size of the
contained special interest groups is given.

Network |V | |E| Avg.Deg. APL d Density C #CC |CC|max |KDML| |WM| |IR| |ABIS|
LWA[≥0]∗ 70 812 23.20 1.72 4 0.34 0.55 1 70 37 16 10 7
LWA[≥5]∗ 65 227 6.99 2.53 5 0.11 0.33 1 65 34 15 9 7
LWA[≥10]∗ 56 109 3.89 3.09 7 0.07 0.31 3 50 31 12 7 6

Furthermore, we extracted the “visited talks”, i.e., the talks visited by each
participant using the RFID information, resulting in 773 talk allocations for the
conference participants.

4.3 Community Structure

LWA 2010 was a joint workshop week of four special interest groups of the German
Computer Science Association (GI).

– ABIS focuses on personalization and user modeling.
– IR is concerned with information retrieval.
– KDML focuses on all aspects of knowledge discovery and machine learning.
– WM, for ’Wissensmanagement’, considers all aspects of knowledge management.
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Fig. 1. Degree distribution P (k) (left) and distribution of the different contact durations (right) in
LWA[≥0]∗.

During the registration for LWA 2010, each participant declared his affiliation to
exactly one special interest group: KDML (37), WM (16), ABIS (7), IR (10), for a total
of 70 participants. Since these interest groups capture common research interests as
well as personal acquaintance, the set of participants is naturally clustered accordingly.

As a first characteristic for the interest groups, we aggregated the visited talks
groupwise per track. Although several sessions were joint sessions of two interest
groups, Figure 2 clearly shows for each group a strong bias towards talks of the
associated conference track.

Fig. 2. Distribution of the conference tracks of the talks visited by members of the different
interest groups. The top-left figure, for example, shows the distribution of tracks visited by the
KDML special interest group.
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The question arises, whether or not an according community structure may be
observed in the contact graphs obtained during the conference. Figure 3 shows the
obtained weighted and unweighted modularity scores for the contact graphs LWA[≥i]Σ
and LWA[≥ i]# with i = 1, . . . , 15, considering the interest groups as communities.
We first observe that the modularity monotonically ascends with increasing minimal
conversation length. This conforms to the intuition that more relevant (i. e., longer)
conversations are biased towards dialog partners with common interests, as captured by
the interest group membership.

For analyzing the impact of repeated or longer conversations, we calculated the
weighted modularity score on the same networks, given the number of conversations or
the aggregated conversation time between two participants as edge weights. Figure 3
shows that the obtained modularity scores are nearly constant across the different
networks. This suggests that peers tend to talk more frequently and longer within their
associated interest groups. To rule out statistical effects induced by structural properties

Fig. 3. Modularity score for varying minimum conversation length.

of the contact graphs, we created a null model by repeatedly shuffling the group
membership of all participants and averaging the resulting unweighted modularity
scores. As Figure 3 shows, the shuffled group allocation shows no community structure
in terms of modularity as expected.

Additionally, the standard community detection algorithm Infomap [20] which
is shown to perform well [21] was chosen for reference and applied to the same
contact graphs. Figure 3 also shows the unweighted modularity scores for the obtained
communities. The resulting line strictly ascends with increasing minimal conversation
length. It coincides with the modularity scores of the interest group induced community
structure, with parity around five minutes and nearly doubles both weighted and
unweighted modularity scores in LWA[≥15]Σ and LWA[≥15]#.

Inspection of the obtained communities suggests that the applied algorithm yields
communities in LWA[≥0]∗ which are similar to the given interest groups and mines
more specialized (i. e., sub communities) in LWA[≥ i]∗, i ≥ 5. Figure 4 shows for
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reference in LWA[≥0]∗, that ABIS and IR are nearly perfectly captured by Infomap
but KDML is split mainly across two communities, one of which shared with WM. We
do not aim at evaluating any community detection algorithm: We rather exemplify the
application of such algorithms and approximate an upper bound of the modularity score
in the contact graphs.

KDML WM IR ABIS

S
iz

e

0
5

10
15
20
25
30
35

Fig. 4. Distribution of the interest groups across the six communities mined by the Infomap
algorithm on LWA[≥0]∗. Each color corresponds to a single (non-overlapping) community.

For analyzing social interactions across different interest groups, Table 2 shows the
density in correspondingly induced sub graphs – that is, for each pair of interest groups
Vi, Vj ⊆ V in the complete contact graph G = (V,E), the fraction of all actually
realized edges in the set of possible edges between Vi and Vj .

Within the interest groups, the density values are strictly above the global density
(cf., Table 1), but strictly below across different groups. This suggests that participants
actually tend to interact more frequently with members of their own interest group.

Table 2. Density in the the contact graph LWA[≥0]∗.

ABIS IR KDML WM
ABIS 0.62 0.23 0.19 0.28
IR 0.23 0.44 0.21 0.20
KDML 0.19 0.21 0.38 0.31
WM 0.28 0.20 0.31 0.58

4.4 Roles and Key Players

The assignment of roles to nodes in a network is a classification process that categorizes
the players by common patterns. In this section, we discuss the connection between the
academic status of the conference participants and the classic centrality measures and a
community based role assignment. The latter was introduced in [12] together with the
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Table 3. Group size and average graph centralities per academic position and for organizers and
non-organizers in LWA[≥5]∗: degree deg, strengths str# and strΣ , eigenvalue centralities eig*,
eig# and eigΣ , betweenness bet , closeness clo and the average community metric rawComm .

position/
function size deg str# strΣ eig* eig# eigΣ bet clo rawComm

Prof. 10 7.500 16.700 11893.200 0.310 0.285 0.337 49.565 0.407 0.525
PostDoc 11 7.727 15.545 9793.364 0.303 0.213 0.198 75.973 0.419 0.675
PhD-student 33 7.152 15.091 9357.182 0.309 0.201 0.165 46.221 0.409 0.567
Student 5 3.600 12.400 6514.400 0.099 0.068 0.027 17.989 0.347 0.417
Other 6 6.667 14.333 8920.000 0.288 0.211 0.209 38.234 0.413 0.581
Organizer 11 10.000 23.727 15227.545 0.459 0.424 0.417 94.497 0.447 0.699
Non-Organizer 54 6.370 13.389 8408.056 0.256 0.162 0.144 39.565 0.397 0.542

rawComm metric that it is based on. The metric is defined as the sum:

rawComm(u) =
∑

v∈N(u)

τu(v) ,

where the function τu(v) assigns the contribution of a node v to connect communities
of u given by

τu(v) =
1

1 +
∑
v′∈N(u)

(
I(v, v′) ∗ p+ Ī(v, v′)(1− q)

) .

In the formulas N(u) is the neighborhood of a node u, I(v, v′) = 1 if there is an edge
between v and v′ and 0 else; Ī = 1 − I , p is the probability that an edge in the graph
connects two communities and q is the probability that two non-linked nodes are in
different communities.

The rawComm score can be interpreted as a measure of how much a node connects
different communities (for details, cf., [12]). To estimate the probabilities p and q we
used the community clustering given by the four special interest groups.

Global Characterization Table 3 displays the average values of several graph
structure metrics of LWA[≥5]∗ aggregated by academic position and for the conference
organizers and non-organizers (regular conference participants), respectively. Note,
that while the categories referring to academic status are disjoint (the category other
includes all participants that do not fit one of the other four) organizers and non-
organizers both include participants from all the ’status’ categories.

A first observation is that the organizers have significantly higher scores in all
nine measures under observation. In the considered conference scenario this is highly
plausible due to the nature of an organizer’s job during a conference – which in the case
of LWA 2010 also included the supervision and maintenance of the RFID-experiment
and the CONFERATOR. Among the four academic positions, striking differences can be
noticed. First of all, the student scores in all centralities are lower than those of the other

33



categories. We attribute this phenomenon to the fact, that students are less established
in their scientific communities than scientists in higher academic positions and usually
have little conference experience. This example motivates the need of social tools that
assist participants in initiating contact to their communities and persons of interest.

Within the categories “Prof.”, “PostDoc” and “PhD-student” the eigenvalue cen-
tralities show a particular behavior. While the unweighted eigenvalue centrality eig*
does not fluctuate much, the weighted versions eigΣ and eig# increase strongly
from one position to the next higher one. Eigenvalue centralities are considered a
measure of importance. It seems plausible, that in a contact graph among scientists,
the players with longer scientific experience – including a higher and broader degree
of knowledge within scientific areas and more previous contacts and collaborations
with their colleagues – are considered more important and that this attitude is reflected
in their contacts. The node strength measures show similar results. While the degree
deg is only slightly different among the three positions, the weighted versions str#
and especially strΣ show large differences and increase together with the position.
The considerable difference between the weighted and unweighted measures can be
indicates the relevance of the frequency and the length of the contacts: Professors, for
example, have longer and more contacts to other participants than postdocs.

Another aspect is illustrated by the betweenness (bet) scores: Relatively to the
other groups, a lot of shortest paths of LWA[≥ 5]∗ run through nodes of PostDoc’s.
We attribute this to the structure of scientific institutes, where usually one professor
supervises several PostDocs who again each supervise several PhD-students. PostDocs
are the connection between professors and the postgraduates and thus assume the role
of gatekeepers in their working environment.

Finally, for the rawComm metric it is harder to come up with a plausible
explanation for the difference and order of the academic positions. However, as
described in [12], it can be combined with ndeg – the degree divided by the maximum
degree – to gain a role classification for the network’s nodes in the following way: One
out of four roles is assigned to a node v according to

role(v) :=





Ambassador ndeg(v) ≥ s, rawComm(v) ≥ t
Big Fish ndeg(v) ≥ s, rawComm(v) � t

Bridge ndeg(v) � s, rawComm(v) ≥ t
Loner ndeg(v) � s, rawComm(v) � t

where s and t are thresholds that we chose as s = t = 0.5 – the same choice as in [12].
Ambassadors are characterized by high scores in both degree and rawComm which

means that they connect many communities in the graph. A Big Fish has contacts to
a lot of other nodes, however, mostly within the same community. Bridges connect
communities, however, not as many as ambassadors. Finally, Loners are those with low
scores in both measures.

In the following, we investigate how nodes in their explicitly given roles like the
academic position and the job (organizer) fill those implicitly given graph structure-
based roles. Therefore, we applied the role classifier to the graphs LWA[≥0]∗ through
LWA[≥15]∗ to determine – under the assumption, that longer contacts indicate more
serious and scientific discussions – how this changes the community roles.
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The first immediate finding is, that in none of the graphs any participant was ever
classified as Big Fish, i. e., whenever a node has a high degree it also has a high
rawComm score. We attribute this peculiarity to the fact, that the very nature of social
interaction at conferences usually is exchanging ideas with participants outside the
own peer group. Especially during the LWA 2010, participants were encouraged to
engage in interdisciplinary dialogue for example by including several joint sessions in
the schedule and a combined event of social dinner and poster session.

The first of the three diagrams in Figure 5 displays the percentage of participants
with a common academic position or job that were classified as Ambassador. The line
marked with triangles displays that fraction of all participants together. The second and
third diagram display the same fractions for the roles Bridge and Loner. For example in
LWA[≥0]∗, 40% of the professors were classified as Ambassador, 60% as Bridge and
0% as Loner. In each diagram the size of the nodes indicates the size of the group of
participants with the examined position/job in the respective graph. The PhD-students,
for example, are the largest section, while the students form the smallest. For LWA[≥5]∗
those sizes are given in Table 3.

While all curves in Figure 5 fluctuate, there are several clearly visible tendencies.
In all three diagrams, the fractions of PhD-students is very close to the fraction of
all participants. The simple reason for that is, that PhD-students are the majority
within the conference population and therefore dominate the general behavior. Many
of the organizers start out as Ambassador or Bridge. This is again consistent with
their job description. However, filtering out short contacts and thus the typical quick
organizational conversations, the relevance of the organizers decreases with a higher
limit to the minimum contact length. More and more organizers become Loners; in
the last graph LWA[≥15]∗, they are almost equally distributed among the three roles.
On should keep in mind, that organizers contain persons in all academic positions.
Therefore, after filtering out most of the contacts that presumably contain their
organizational work, the organizers act mainly in their different role as conference
participants, which might explain the stronger fluctuations in the right part of the curve.

Very consistent with the findings described above is the role distribution among the
students. While in the first graphs, where short contacts dominate the longer ones, some
of them are classified as Bridge or Ambassador, they quickly disappear from those roles
and are classified as Loner.

Compared to the PhD-students, the fractions of the PostDocs are with few excep-
tions higher for the roles Ambassador and Bridge and lower for Loner. This is again
consistent with the previous observations concerning the graph structure measures. Due
to their greater experience PostDocs seem to have more access to colleagues in other
communities. However, with the increasing filter limit, like most of the participants they
become classified as loners.

Finally, the curve of the professors in the role Ambassador shows the most radical
deviation from the mainstream. While in that role all other group’s fractions decrease,
that of the professors increases significantly up to 70% which is far more than any of
the other academic positions. In summary, we observe, that the chosen method of role
assignment seems to be highly correlated to the roles like academic position and the
organizer job.
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Characterization of Explicit Roles In the following, we aim to characterize the roles
in more detail; for the dataset, we focus on the majority classes, i.e., we consider the
target concept non-organizer concerning roles, and the target concept PhD-students
concerning academic position. For the analysis, we applied a method for mining
characteristic patterns [22] based on subgroup discovery techniques, e.g., [23]. For the
data preprocessing, we first discretized the numeric features described above into three
intervals (low, medium, high) using equal-width discretization.

The most descriptive factors for the role non-organizer are shown in Table 4 (upper).
They confirm the averaged results shown above, in that the most characteristic single
factors are given by the closeness, eigenvalue centrality, and the degree of the non-
organizers, for which lower values than those of the organizers are measured.

However, if we consider combinations of factors, we observe, that there are sub-
groups regarding the role non-organizer for which extreme values, e.g., of the closeness
together with the eigenvalue centrality yield a significant increase in characterization
power, as shown by the quality increase in Table 4.

Table 4. Role = Non-Organizer / Position = PhD-student for the aggregated count information
with an aggregated contact length ≥ 5 min. The tables show the lift of the pattern comparing
the fraction of non-organizers / PhD-students covered by the pattern p compared to the fraction
of the whole dataset, the size of the pattern extension (number of described non-organizers /
PhD-students), and the description itself.

target # lift p size description

Non-Organizer

1 1.06 0.88 51 clo={low;medium}
2 1.05 0.87 61 eig*={low;medium}
3 1.04 0.86 59 deg={low;medium}
4 1.10 0.92 12 clo={low;medium} AND deg={high;medium}
5 1.12 0.93 30 clo={high; low} AND eig*={low;medium}

PhD-student

1 1.07 0.54 59 bet={high; low}
2 1.07 0.54 48 str={high; low}
3 1.14 0.58 26 deg=high
4 1.31 0.67 12 bet={high; low} AND eig*=high
5 1.38 0.70 20 deg=high AND bet={high; low}
6 1.58 0.80 10 deg=high AND bet={high; low} AND eig*={high; low}

If we consider the largest group PhD-student (concerning the academic positions),
we observe the single factors shown in Table 4 (lower), also confirming the averaged
results presented above. Similarly to the non-organizers, we see that extreme values, i.e.,
sets of high and low values, are also very significant for distinguishing PhD students.
As expected the combination with other strong influence factors increases the precision
of the patterns (indicated by the lift parameter).
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5 Conclusions

In this paper, we have presented results of an in-depth analysis of user-interaction and
community structure of face-to-face contacts during a conference.

We have performed various analyses on data collected during the LWA 2010 in
Kassel in October 2010 by using a social conference guiding system. We analyzed
and described high-level statistics of the collected network data, examined the different
communities, the roles and key players concerning these and the conference in total,
and discussed various issues of user interaction.

The results of the analysis show that there is consistent community structure in the
face-to-face networks, and that structural properties of the contact graphs obtained at
the LWA conference reflected different aspects of interactions among participants and
their position and roles.

For future work, we aim to consider the community related methods further, since
communities play a central role for a social conferencing system and should allow and
support emergence and evolution of community structure. Furthermore, identifying key
actors according to their roles is an interesting task, e.g., being used for creating virtual
sessions or recommendations.
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Fig. 5. Fraction of participants that assume the roles Ambassador, Bridge and Loner.
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Abstract. Inexpensive sensors, value added data products, health records, so-
cial networks and the world-wide-web provide us with information that holds the
promise to overcome longstanding temporal and spatial boundaries to human per-
ception and prediction. Machine learning and data mining can and should play a
key role to realize this dream. Unforuntately, the amount and the complexity of
the data generated often presents unique computational problems in scale and
interpretability. This talk illustrates that meeting the challenge is not insurmount-
able. Specifically, I will discuss an interpretable matrix factorization technique
that is easy to implement and that scales well to billion of entries. Its useful-
ness will be illustrated on several web-scale datasets including 1.5 million twit-
ter tweets, 150 million votes on World of Warcraft guilds, and a matrix of 3.3
Billion entries for phenotyping drought stress in barley from sequences of hyper-
spectral images. For prediction, however, asking the data only is likely to be not
enough. For instance, coronary artery calcification levels in adults are likely the
result of a complex web of uncertain interactions between the measured risk fac-
tors from their early adulthood. I will demonstrate that by combining probability
and (subsets of) first-order logic to deal with the uncertainty and complexity re-
spectively machines can identifying long-range, complex interactions between
risk factors from data collected from the Coronary Artery Risk Developments in
Young Adults (CARDIA) study. This longitudinal study began in 1985-86 and
measured several risk and vital factors as well as family history, medical history,
physical activity, etc. in different years (5, 10, 15, and 20) respectively for about
5000 patient.
This talks is based on joint works with Agim Ballvora, Christian Bauckhage, Jeff
Carr, Marc Langheinrich, Jens Leon, Sriraam Natarajan, Lutz Pluemer, Christoph
Roemer, Uwe Rascher, Albrecht Schmidt, Christian Thurau, and Mirwaes Wa-
habzada.
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Abstract. Personalized web search and recommendation systems aim to
provide results that match the users‘ personal interests and lead to a more
satisfactory and effective information access. Building user profiles that
reflect a large spectrum from continuous (long-term) to specific (short-
term) interests is an essential task when developing personalized web
applications. In this paper we present a method to generate user interest
profiles without direct user interaction generated out of data sourced
from quiz games played by the user. Both utilized games, WhoKnows?
and RISQ! , have originally been developed as serious games with the
intention to rank facts in knowledge representations as well as to find
inconsistencies in a given knowledge base.

Key words: user profiles, interests, DBpedia, serious games

1 Introduction

The anyhow enormous number of information objects on a diverse range of
topics on the world wide web (WWW) is continually growing. Search engines
can be regarded as signposts in this information universe mandatory for any
information access in the WWW today. But even with the help of search engines,
the overwhelming amount of information resources being delivered as search
results often simply overloads the user.

One possible way out of this information overflow is considered in progressing
personalization. Ideally, the users should only be provided with information that
fit to their personal information needs. Search engines apply various technologies
to provide personalized search results, as e. g., user history, bookmarks, commu-
nity behaviour as well as click-through rate or stickiness to a specific web page.
In general, the main approaches for personalization are the reranking and filter-
ing of search results and the development of personal recommendation systems.
But, to achieve results according to the user’s interests and information needs,
not only statistical usage information but also explicit descriptions of the user’s
interests are necessary that are able to reflect a large spectrum of user interests
in an interoperable way. Besides personalized search results user interest profiles
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can also be used to determine the user’s expertise and know-how. These profiles
can be applied in social networking as well as in finding experts for specific topic
areas.

In this paper we present a knowledge-based approach for the creation of user
interest profiles by mining and aggregating logfile data from quiz games that
shift the conventional user interrogation to an entertaining setting.

There are various approaches to collect data for building user profiles, some
of them are summarized in Sec. 2. In contrast to most of the existing approaches,
the use of quiz games provides valuable and sufficient reliable information about
how firm a user’s knowledge is on given topic areas. In Sec. 3 the two games,
WhoKnows? and RISQ! are introduced that have been utilized for this research.
Sec. 4 summarizes the applied ontologies and category systems used to represent
the user interests, while Sec.5 explains our approach in detail. In Sec. 6 first
results are shown and possible future applications are pointed out. Sec. 7 provides
a brief evaluation and discussion of the achieved results and Sec.8 concludes the
paper with an outlook of ongoing and future work.

2 Related Work

Personalised services demand the aggregation of user profiles that represent the
interests of users adequately to fulfil their mission. Such services can be person-
alised and adaptive web applications, such as e. g. Persona [1], PResTo! [2] or
OBIWAN [3], as well as recommendation systems like Quickstep [4] for scientific
papers that apply interest profiles.

Observing user behaviour is a common way to create user interest profiles,
as e. g., by web usage mining or relevance feedback, c. f. [2]. These behaviour-
based approaches rely on machine learning or clustering algorithms and suffer
from a cold start problem, i. e. initially there are no valid recommendations for
the user that can be suggested to request feedback. Another approach to obtain
user interest profiles is knowledge-based profiling that employs questionaires
and interviews to acquire the users’ interests, which often appears intrusive or
disturbing to the user.

Though there are vocabularies to model user interests only few user profiling
systems apply Semantic Web technologies. The widely used FOAF vocabulary [5]
allows to represent interests by linking documents with the interest property.
Based on that, the E-foaf:interest Vocabulary1 provides the possibility to specify
more detailed statements about interests like the period of time and the value of
interest. The Cognitive Characteristics Ontology2 likewise allows to specify skills,
expertise and interests having a weight and time relation. The Recommendation
Ontology3 provides a vocabulary for describing recommendations that can be
ranked and addressed to groups or agents.

1 http://wiki.larkc.eu/e-foaf:interest, released January 2010
2 http://smiy.sourceforge.net/cco/spec/cognitivecharacteristics.html
3 http://smiy.sourceforge.net/rec/spec/recommendationontology.html
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For Quickstep [4] a research topic ontology containing 32 classes has been
purified from the Open Directory Project4 to model user interests in the computer
science domain. Research papers are classified according to classes within the
topic ontology by a k-Nearest-Neighbour classifier based on the documents’ term
vectors, which uses a manually created training set. The user interest profiles are
computed from the classifications of recently accessed research papers. A 7 % to
15 % higher topic acceptance is observed using a topic hierarchy compared to a
flat topic list and a small improvement in recommendation accuracy.

Serious games have been utilized before in the area of semantic web. The
games Guess What?! [6] and the Virtual Pet Game [7] are used for ontology
building while the quiz game SpotTheLink [8] tries to align concepts from the
DBpedia to the PROTON upper ontology. Serious games have also been devel-
oped to annotate images including the ESP Game [9], and Phetch [10]. Most of
these games can only be played in competitive multiplayer mode, in contrast to
the games utilized in this paper, where a single player can play alone. Therefore,
correctly and wrongly identified questions can only be identified assuming the
statements within the applied ontology are correct. The purpose of these quiz
games is the ranking of properties in an existing ontology.

3 Utilized Games

We have analyzed the log files of two games, namely WhoKnows? [11] and RISQ!
[12] that have been developed for relevance ranking of facts in DBpedia in order
to get information about entities that are known to single players. The data is
anonymized, but we managed to reassign the identity of 14 persons from our
research institute that can be used for evaluation.

3.1 WhoKnows?

Subject Property Object

Chile language Spanish language

Iraq language Arabic language

Brazil language Portuguese language

Italy language Italian language

Fig. 1. Screenshot and triples used to generate a One-To-One question.

4 http://dmoz.org/
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WhoKnows? is based on the principle to present questions to the user that
have been generated out of facts stemming from DBpedia RDF triples. The
game has been designed to evaluate the ranking heuristics proposed in [13].
These heuristics are based on the RDF graph structure and use statistical ar-
guments to rank RDF properties according to their relevance. Fig. 1 shows the
sample question ‘Spanish language is the language of ...?’ with the correct an-
swer ‘Chile’. The question originates from the RDF triple

dbp:Chile dbpprop:language dbp:Spanish language .

and is composed by turning the order upside down:

Object is the property of: subject1, subject2, subject3...

Fig. 1 also shows the RDF triples for the remaining choices. In addition,
false answers ‘Iraq’, ‘Brazil’, and ‘Italy’ are randomly selected from other triples
meeting the requirement that the RDF triples’ subjects belong to the same or a
similar category and are not related to the object used in the question.

To add variety and to increase the user’s motivation, the game is designed
with different game variants: One-To-One: only one answer is correct, One-To-N:
one or more answers are correct, and the Hangman game asks to fill the correct
answer in a cloze. While playing the game, the variants are used alternately.
After selecting the answer, the user immediately receives feedback about the
correctness of her choice. WhoKnows? is described in more detail in [11].

Within the log files used for this study 5,889 rounds have been played. Ap-
proximately half of the rounds have been played in Facebook5 by 83 players,
the remaining have used the anonymous standalone version6, whereas 11 players
have given an answer in 100 to 300 rounds.

3.2 RISQ!

RISQ! has been developed as a serious game to rank the facts about renowned
persons in DBpedia. The game can be played in the social network Facebook7

as well as standalone8. The flow of RISQ! is similar to the famous TV-show
Jeopardy!. Questions are presented to the contestants in four different topics
and three different price categories. In contrast to the original Jeopardy! game
less topics and price levels are used in order to decrease the number of questions
and increase the game speed.

In each question a clue is presented to the player that points to the solution.
The clues are constucted by using an RDF triple from DBpedia, replacing the
property by a template to form a valid sentence, and replacing the solution
by a category it belongs to. An example for such a hint is ‘This New York
State Senator was nominee of United States presidential election, 1940.’, whose
solution would be ‘Franklin D. Roosevelt’. Since automatically constructed hints

5

6 http://tinyurl.com/whoknowsgame
7 http://tinyurl.com/facebook-risq
8 http://tinyurl.com/risqgamefb
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Subject Property Object

Lenin category Russian Philosophers

Lenin altName Vladimir Iliych

Lenin category Philosophers

Fromm category Philosophers

Marx category Philosophers

. . . category Philosophers

Fig. 2. Screenshot and triples used to generate an active clue.

are not helpful at times and the game aims at finding the most helpful properties
to identify a person, the contestants can buy additional clues with the game
money.

In the orginal TV-show three contestants are playing against each other,
whereas in RISQ! the game can be played only in single user mode so far. We
introduced a timeout to prevent people from looking up the correct solution and
log all player actions for later analysis.

RISQ! logged 117 unique players of which 14 has been identified as being
members of our research institute. The users have played an average of 197
questions. In total 23,093 questions have been logged.

4 Entity Hierarchies

To classify the users’ interests we refer to multiple entity classifications. We
assume that if a user knows facts about several entities of a certain category,
she is interested therein, as e. g., a player frequently answers questions about
individual german soccer players correctly, it can be said she is interested in this
domain, represented by Wikipedia category GermanFootballers, and further
generalized in the Football domain.

The entities utilized in the games originate from DBpedia and are therefore
organized in multiple hierarchical category systems, namely the DBpedia Ontol-
ogy [14] and YAGO [15], and also linked to Wikipedia categories by dc:subject

and the Freebase type system [16] via owl:sameAs. Each hierarchy constitutes
one layer in a huge directed acyclic graph with leaf nodes containing the entities.

The DBpedia Ontology [14] is a high-level ontology, which has been manually
created and contains 272 classes. Its subsumption hierarchy is comparatively
shallow having a maximum depth of 6. The entities’ types base on mappings of
infoboxes within Wikipedia article pages to the DBpedia ontology classes.
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YAGO is an automatically generated ontology based on Wikipedia and Word-
Net [15]. The class system is extracted from Wikipedia categories and WordNet
hyponym relations, it embraces 149,162 classes.

On Wikipedia, categories are used to organize the articles, enabling users to
find and navigate related articles. According to the guidelines each article should
be placed in at least one category and all of the most specific ones it logically
belongs to. The category system embraces more than 450,000 categories and
forms a poly-hierarchie.

Freebase [16] is a collaborative database of structured knowledge having
a rather lightweight type system that consists of conceptual ‘topics’, that are
grouped in ‘types’, i. e. the fixed depth is 2. The type hierarchy is not determi-
nated, hence types can be mixed independently as needed (e. g. to assign a certain
property) and are created by users. Each entity is at least of type common/topic.

5 Method

Answering a question in a quiz game demands that the player has knowledge
about that certain entity. We assume that frequently known entities are in the
users scope of interest, hence the categories, whose member entities are known
frequently are assumed to form a topic relevant to the user. The level of ‘proven’
knowledge about an entity e is represented by a numeric value, which is calcu-
lated from the number of correctly and wrongly answered questions. As shown in
(1) this value gets weighted by the ratio of given facts, respectively RDF state-
ments in the knowledge base, that have been answered. We employed a square
root for the weight to reduce the impact of subjects having a great many of
statements. The rated interest in e is calculated by

inte,u =

(
factsplayede,u

factse

)1/2

· correcte,u − wronge,u

correcte,u + wronge,u
, (−1 ≤ inte,u ≤ 1). (1)

The users’ interest in a certain category c is determined as the mean value
of interests in the entities played within this category, which gets weighted by
the ratio of played entities.

intc,u =

(
entitiesplayedc,u

|{c/e ∈ c}|

)1/2

·
∑

entitiesplayedc,u
inte

entitiesplayedc,u
, (−1 ≤ intc,u ≤ 1). (2)

These ratings can be specified for a single user (intx,u) by applying only
answers of user u, as well as for the whole group of users (intx,∀), applying
all answers, which gives us an indicator for the general knowledge. Since both
games are embedded in a social network, whose members considerably differ in
characteristical attributes like age, gender, origin and social background, one
can suppose an adequate diversity of interests within the group, who plays the
games. To distinguish special user interests from general knowledge we derive the
users’ performance for an entity or within a category as shown in (3). By sub-
tracting the general knowledge of the peer group, the personal impact becomes
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recognizable.

perfx,u =
intx,u − intx,∀

2
, (−1 ≤ perfx,u ≤ 1). (3)

A positive performance value indicates a special interest of the user in x and the
higher this value, the more distinctive is the knowledge of the user compared to
the general knowledge within the group.

The interests are ranked according to the users interest and performance.
These outcomes can be modeled using the Cognitive Characteristics Ontology
and integrated in the users FOAF profile, exemplary we described a main interest
of Magnus here:

ex : magnus a f o a f : Person ;
f o a f : name ”Magnus Knuth” ;
cco : i n t e r e s t <http :// dbpedia . org / r e s ou r c e /Greece> ;
cco : hab i t [

a cco : Cogn i t i v eCha r a c t e r i s t i c ;
cco : t op i c <http :// dbpedia . org / r e s ou r c e /Greece> ;
cco : c h a r a c t e r i s t i c cco : i n t e r e s t ;
wo : weight [

a wo : Weight ;
wo : we ight va lue 0 .22 ;
wo : s c a l e ex : AScale
]

] .
ex : AScale a wo : Sca l e ;

wo : min weight −1.0 ;
wo : max weight 1 .0 ;
wo : s t e p s i z e 0 .01 .

Having computed the interest for a player in each category, we also have tried
to deduce the interest in entities have never been played. Therefore the value of
interest in an entity e is determined as the mean value of the categories it is a
member of.

dinte,u =

∑
c/e∈c ratingc,u

|{c/e ∈ c}| , (−1 ≤ ratinge,u ≤ 1). (4)

The interest value of entities that never have been played is computed by
the membership categories that serve here as a common feature. Entities that
are located in branches of the hierarchy that not have been played will earn the
interest of the parent categories. As an extension of this it would be possible to
use further common features or relationships that could be retrieved from other
properties than rdfs:typeOf and dc:subjectOf.

6 Results

Table 1 shows the top and least ranked entities for the authors of this paper.
Though the complete rankings could not be strictly validated, the general rank-
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ings of entities appeared to the individual players, with few exceptions, entirely
acceptable.

Table 1. Entity rankings

Rank Player A Player B

1 Gwyneth Paltrow (0.28) Country music (0.25)
2 Ludwig van Beethoven (0.26) Major League Baseball (0.18)
3 Sylvester Stallone (0.24) India (0.17)

. . . . . . . . .
n-1 Duke Ellington (-0.20) Ohio (-0.03)
n Richard Wagner (-0.24) Michigan (-0.10)

Rank Player C Player D

1 Jack Nicholson (0.37) Pop music (0.27)
2 Sophia Loren (0.32) Rudyard Kipling (0.24)
3 Robert De Niro (0.30) Royal Navy (0.24)

. . . . . . . . .
n-1 Franz Marc (-0.26) Nigeria (-0.03)
n Gustav Mahler (-0.29) Wolfgang Pauli (-0.14)

One advantage of semantic search is also a disadvantage: the user, who is
searching for information by intitially entering a keyword needs to decide for an
entity to resolve disambiguities originating from homonymous terms. To support
this task we can rank the resources according to his personal interests. As e. g.,
looking for the programming language ‘Python’ this can support someone fimiliar
to information science or other programming languages. In Table 2 a comparison
of the rankings made for a computer scientist and for the average user is shown.
Although none of these entities have ever been played within one of the games,
a tendency can be observed. Unfortunately, ‘Pythonydae’ and ‘Monty Python’
lag behind, though they seem of interest in this context.

Table 2. Rankings of different entities for the term ‘Python’

Rank computer scientist average player

1 Python (programming language) Python (Efteling)
2 Python (mythology) Python (roller coaster)
3 Python (Efteling) Python (programming language)
4 Python (film) Python (missile)
5 Python II Python (mythology)
6 Python of Byzantium Colt Python
7 Python Automobile Armstrong Siddeley Python

. . . . . . . . .
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7 Evaluation

To evaluate the achieved interest profiles for the identified 14 persons, they have
been asked to select ten categories from each hierarchy system and to order them
according to their personal interests. We received the asked for orderings back
from 12 participants. At a first glance some users’ self-assessment correponds
quite well with the computed ranking, though for others there have been exten-
sive differences. To compare the players’ ordering with the computed list, the
longest common subsequences have been computed. Therefore, we put the com-
puted rankings in the players’ stated order and extract the longest increasing
subsequence of that permutation with a patience sort algorithm [17]. The longest
common subsequences have an average length of 5.5, that is more than the half
was ordered correctly. There was no hierarchy that performed preferably better.

It is sometimes surprising how categories are ranked, but considering the un-
derlying entities reveals the relationships to the known entities. In subsequent
interviews we could figure out, that one reason for some players’ striking differ-
ences was their intensional interpretation of the category names which deviated
from the extension of the category, which is used for computation. Someone
might not at all be interested in the ‘Rectors of the University of Edinburgh’
but still know facts about Sir Winston Churchill or Mr Gordon Brown, who are
members of this Wikipedia category.

8 Summary and Outlook on Future Work

The data gathered from the games allowed us to derive players’ interests in
certain entities and categories. The mapping there has been straight-forward
without any detours like natural language processing or machine learning.

Given the increasing importance of social semantic web it can be valuable to
publish user interests within FOAF profiles automatically or give recommenda-
tions about which topics to use.

The main problem of the application is that of incomplete coverage, since the
applied datasets in both games have been filtered in advance, the data of Who-
Knows? was filtered for entities having maximum divergence in their statements
while RISQ! comprises solely data related to persons. This partiality excludes
entire domains from being reasonably rated and must be dissolved to achieve
more reliable results. Therefore, we plan to extend the entity base for both
games. Nonetheless, it seems reasonable to observe further kinds of relatedness
than the entities categorization.

The user profiles derived with this approach reflect rather long-term interests,
in combination with specific short-term interest, that e. g. originate from log file
analysis, they can be purposed for personalization of semantic search, which is
one objective in our project Yovisto9, an academic video search engine.

9 http://yovisto.com/
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Abstract. The identification of specific types of suspicious network
structure is of interest in a number of application areas, including net-
work intrusion detection and the analysis of mobile telecommunications
data. In the work presented here, the focus is on financial transactions.
We are particularly interested in scenarios where the objective is to iden-
tify misuse or fraud. We are working towards a tool that will identify ex-
amples of specific structures in networks, and provide an index of these
which may be browsed through a visualization system. We present some
preliminary work on identifying such dense structures and provide ex-
amples from a basic system for visualizing these in peer-to-peer lending
data.

1 Introduction

This work is part of a project that has the objective of locating examples of
specific types of structure contained in a network which may represent misuse or
fraud. The project aims to provide a browsing facility for these structures so that
they can be examined by a user in a graphical interface, in order to confirm the
existence of fraud. Preprocessing the network to identify these structures allows
for subsequent fast access to them for the user, although conceding the cost of
an increase in storage space. This approach aims to reduce as much as possible
the necessity to perform subgraph isomorphism testing for graph search, which
is known to be an NP-complete problem [1].

The layout of this paper is as follows. Section 2 reviews work in the fields of
fraud detection in network data, community finding and graph mining. Section 3
describes peer-to-peer lending systems which provide the data to be analyzed
during the course of this project. Section 4 outlines our progress with system
implementation to date. Section 5 presents some preliminary results. Section 6
concludes the paper and suggests future work.

? This work is supported by Science Foundation Ireland under Grant No.
08/SRC/I1407.
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2 Related Work

This section reviews some characteristics of subgraphs which have been identified
as fraudulent in different network contexts. A notable feature of these subgraphs
is their high density, which relates to the community activity of fraudsters. To
facilitate fast retrieval of structures of a given type from a network, a popular
approach has been to enumerate frequent subgraphs, and create an index based
on these. Previous work in these areas is presented in this section.

2.1 Fraud Detection in Network Data

The fan-out-fan-in (FOFI) subgraph is of interest in financial networks as it may
indicate money laundering in the form of smurfing or layering [2]. The structure
represents the movement of funds from a source to a destination account, with
the transaction divided among an intermediate set of accounts, in order to keep
each transaction under a threshold. The detection of layering is not a compu-
tationally complex problem in networks, and may be described simply. Let A
be a transaction matrix, where Ai,j = 1 if there is a transaction between ac-
counts i and j, and 0 otherwise. (A2)x,y is the number of paths of length two
between x and y. This analysis extends easily to longer paths, which represent
more layering [3].

Some other types of network structure are commonly linked to fraudulent
activity. In a telecommunications network, the accounts of fraudsters tend to
be nearer to other fraudsters than the accounts of random customers are. It
has been observed that not many legitimate accounts are directly adjacent to
fraudulent ones, and that fraudsters do not often work on their own [4]. These
facts suggest a near-clique representation for fraudulent activity. In the case
of an online auction community, fraudsters may interact in small and densely
connected near-cliques with the aim of mutually boosting their credibility [5].
Once an act of fraud is committed, the near-clique can be identified by the
auction site and the accounts of fraudsters removed.

2.2 Dense Structure Mining

In social networks, dense network regions indicate the existence of a community.
Fortunato [6] presents a comprehensive review of the broad field of community
finding. The densest type of network structure is a clique, where each node
connects to every other node in the clique.

There are a number of relaxations of the notion of a clique, for example,
k-plexes [7], k-cores [8] and k-trusses [9,10]. k-trusses in particular strike a good
balance between restrictiveness and tractability. A k-truss is a non-trivial con-
nected subgraph in which every edge is part of at least k − 2 triangles within
the same subgraph. A maximal k-truss is not contained in a larger k-truss. Co-
hen [9] shows that a clique with k nodes contains a k-truss, although a k-truss
need not contain a clique with k nodes. A k-truss contains a k−1-core, although
a k − 1-core need not contain a k-truss. On the tractability side, if we assume a
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hash table with constant time lookups, then for a graph G = (V,E), all maximal
k-trusses can be enumerated in O∑u∈V deg(u)2-time, where deg(u) is the degree
of a node u. The running time can be reduced in practice by using either the
maximal k − 1-cores or the maximal k − 1-trusses of G as input.

2.3 Frequent Structure Mining

The Apriori algorithm is extended by Vanetik et al. to discover typical sub-
graphs [11]. Subgraphs are treated as sets of paths, and the Apriori join oper-
ates on these paths. The size of the maximal independent set of instances of a
subgraph is proposed as an admissible support measure, where instances must
be edge-disjoint. GREW [12] is a heuristic algorithm which finds connected sub-
graphs with a large number of node-disjoint embeddings. The algorithms HSI-
GRAM and VSIGRAM [13] discover frequent subgraphs using breadth-first and
depth-first search paradigms respectively. Connected subgraphs with a specified
number of edge-disjoint embeddings are found in an undirected labeled sparse
graph.

An index is an effective way to store mined structures. The gIndex algo-
rithm [14] mines frequent subgraphs in the database and uses these as an index.
An index of frequent subgraphs is relatively stable to database updates, and
represents the data well. The FG-index [15] proposes a nested inverted-index,
based on the set of frequent subgraphs. If a graph query is a frequent subgraph
in the database, this index returns the exact set of query answers, with no candi-
date verification performed. If the query is an infrequent subgraph, a candidate
answer set close to the exact answer set is produced. In this case, the number of
subgraph isomorphism tests will be small, since, by construction, an infrequent
subgraph will appear in few graphs in the database.

3 Peer-to-Peer Lending Systems

Given our objective of developing tools for browsing suspicious structures in
networks, peer-to-peer lending systems present an interesting application area
to test our tools due to the open availability of data1.

Peer-to-peer lending and crowdfunding have emerged in recent years as the
financial dimension of the social web. Initiatives in these areas offer the po-
tential benefit of disintermediating the process of fundraising and borrowing
money. Example peer-to-peer lending systems are prosper.com, lendingclub.com
and zopa.com. Closely related to peer-to-peer lending is the idea of crowdfund-
ing or crowdsourced investment funding. Two typical crowdfunding companies
for startup funding are seedups.com and crowdcube.com There have also been
a number of initiatives around crowdfunding for creative projects (e.g. pozib-
lie.co.uk). However, these initiatives are of less relevance here as they are altru-
istic rather than investment initiatives.

1 http://www.prosper.com/tools.
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The risk of misuse and fraud is at least as great in these new online systems as
in traditional bricks-and-mortar finance. It is important to monitor the networks
of transactions on these sites to check for money laundering and fraud. This is
important for reasons of regulation but it is also important if users are to trust
the service. Indeed for this reason prosper.com, a prominent peer-to-peer lending
system, make all of their transaction data available for scrutiny.

3.1 The Prosper Lending System

Prosper opened to the public in February 1996. It was closed briefly during
2008 and again during 2009 due to regulatory issues. However, it has reported
significant growth in recent months2. As of October 2010, there was a record
of 7 451 482 bids on 379 916 listings between 1 062 266 members. Of these list-
ings, 34 938 were accepted as loans for an average loan amount of $5 586,70.
Furthermore, there were 4 058 approved groups organized into 1 566 categories.
Borrowers join groups in order to improve their chances of having their listings
funded; many groups enforce additional identity checks on their members and
garner a certain amount of trust.

4 System Description

We used the Java programming language and yFiles [16] version 2.7 to develop
our system. The network data used to test the system is derived from the Prosper
dataset. The construction of the specific networks analyzed is outlined in this
section, along with the types of structure sought.

4.1 Prosper Network Data

The Prosper website allows members to post a listing (describing their intentions
for borrowing) or apply to sponsor a listing. A network can be constructed where
nodes are members, and edges exist from lenders to borrowers who interacted via
the same listing. This yields a predominantly bipartite network, with borrowers
and lenders in mainly disjoint sets, although a small number of the members
take on both roles.

Since members of the same set are unlikely to have links to each other,
the likelihood of clique formation is low. To detect a near-clique, an effective
procedure is to first detect a maximal clique and then expand it. To explore
clique mining, a network can be derived consisting of only borrowers, where an
edge between borrowers implies that they interacted with the same lender, and
vice versa. Given a matrix A where rows and columns represent distinct lenders
and borrowers, respectively, let Ai,j = 1 if there is an interaction between i and
j, and 0 otherwise. Post-multiplying this matrix by its transpose will produce
the matrix of borrowers. To derive a matrix of lenders, A must be pre-multiplied

2 WSJ.com - Peer-to-Peer Loans Grow http://on.wsj.com/kFUAuy
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by its transpose. This operation enables simpler exploration of edges between
borrowers. For our purposes in the detection of cliques, edge weights are not
relevant.

Attribute information associated with the members may be extracted for
further analysis, such as the amount requested or supplied, as well as city and
state of residence. Members who share a common interest may belong to a group.
Group membership often ensures better interest rates for borrowers since lenders
have confidence in trusted groups. The city and state of a group can be extracted,
as well as the rating and name of the group.

4.2 Structures of Interest

The current system allows a user to browse through a set of structures, whose
inclusion has been motivated by their potential association with fraudulent ac-
tivity. FOFI subgraphs may correspond to layering in money laundering. An
example is shown in Figure 3. Maximal cliques are the densest of dense struc-
tures. Bron and Kerbosh [17] proposed an algorithm for finding all cliques and
consequently all maximal cliques (those not contained in larger cliques) in a
graph. Figure 1 illustrates an example. k-Trusses broaden our definition of dense
structure while maintaining tractability. Figure 2 shows an example.

In the complete system, cliques will be expanded into near-cliques by adding
nodes and edges, subject to constraints. Such an expanded clique may be a
frequent, less dense structure that exceeds a certain level of support in the overall
graph, or dense, subject to a density criterion such as that outlined by Lee et
al. [18].

5 Results

The network shown in Figure 1 is built from transactions from April 2009 and
consists of 85 nodes and 1 676 edges. Only the borrowers are included, with links
demonstrating their interaction via a lender, as described in Section 4. Perhaps
due to the small number of nodes in the network, the attribute values within any
given clique compared with those of the overall graph aren’t particularly illu-
minating. For example, almost all members come from California, which lessens
the discriminative power of geographical attributes.

The borrower-lender network used to illustrate the notions of k-trusses and
FOFI subgraph occurs during February 2006, and contains 638 nodes and 7 154
edges. Figure 2 displays a 5-truss. Since the network is predominantly bipartite,
it is noteworthy that such large quantities of triangles exist to reinforce the
edges. This results from the existence of members who acted as both borrowers
and lenders. It is interesting to note that this 5-truss accounts for significantly
more of the money exchanged within the period than would be expected. This
subgraph, which comprises only 3.76% of the members, accounts for 15.58% of
the money transfer. One particular group stands out in the 5-truss. In the entire
graph, 1.25% of members are in the “SF State Teaching Credentials” group.
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Fig. 1. The largest maximal clique in the borrower-borrower graph.

Fig. 2. The maximal 5-truss of the borrower-lender graph.

However, this group makes up 16.6% of membership of the 5-truss. Such a dense
region with a high level of money transfer is remarkable. However, the increased
membership from this group may indicate that there is an innocent explanation
in this case.

Finally, Figure 3 shows a FOFI subgraph of size five containing a source
and destination account, along with three intermediaries. This is remarkable in
that the graph as a whole is predominantly bipartite so it is very unusual to
have three nodes acting as both borrowers and lenders and linking source and
destination accounts in this way.
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Fig. 3. A FOFI subgraph in the borrower-lender graph with three intermediate ac-
counts.

To identify this structure a square matrix was constructed by listing all mem-
bers as column indices as well as row indices, with an entry of 1 if an edge exists,
and 0 otherwise. The method described in Section 2 was employed to detect lay-
ering. The subgraphs returned were filtered so as to only preserve those with
the most suspicious directionality. It was required that an edge from the source
pointed to each intermediate node, and that an edge from each intermediate
node pointed to the target.

6 Conclusions and Future Work

In this paper, the Prosper peer-to-peer lending network has been described from
the point of view of fraud detection. Using techniques from graph mining, the
development of a system to examine this network data has been discussed. Dense
structure has been identified and visualized, facilitating the exploration of struc-
tures with a noteworthy distribution of attribute values in some cases.

Following on from this work, a more comprehensive method of indexing sus-
picious structures will be developed. The visualization system will be altered
accordingly, so as to provide an intuitive means of exploring relevant structures.
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Abstract. We present a stream data generator. The generator is mainly
intended for multiple interrelated streams, in particular for objects with
temporal properties, which are fed by dependent streams. Such data
are e.g. customers their transactions: learning a model of the customers
requires considering the stream of their transactions. However, the gen-
erator can also be used for conventional stream data, e.g. for learning
the concepts of the transaction stream only.
The generator is appropriate for testing classification and clustering algo-
rithms on concept discovery and adaptation to concept drift. The number
of concepts in the data can be specified as parameter to the generator;
the same holds for the membership of an instance to a class. Hence,it is
also appropriate for synthetic datasets on overlapping classes or clusters.

1 Introduction

Most of the data stored in databases, archives and resource repositories are not
static collections: they accumulate over time, and sometimes they cannot (or
should not) even be stored permanently - they are observed and then forgotten.
Many incremental learners and stream mining algorithms have been proposed
in the last years, accompanied by methods for evaluating them [3, 1]. However,
modern applications ask for more sophisticated stream learners than can cur-
rently be evaluated on synthetically generated data. In this work, we propose a
generator for complex stream data that adhere to multiple concepts and exhibit
drift. The generator can be used for the evaluation of (multi-class) stream clas-
sifiers, stream clustering algorithms over high-dimensional data and relational
learners on streams.

Our generator is inspired by recommendation engines, where data are essen-
tially a combination of static objects and adjoint streams: people rank items
- the rankings constitute a fast (or conventional) stream; new items show up,
while old items are removed from the provider’s portfolio - the items constitute a
slow stream; new users show up, while old users re-appear and rank items again,
possibly exhibiting different preferences as before - users also constitute a slow
stream. In [4] we devised the term perennial objects for a stream of objects that
appear more than once and may change properties. In conventional relational
learning, these objects would be static and have one fixed label, while in rela-
tional stream learning they may have different labels at different times. In [4] we
proposed a decision tree stream classifier for a stream of perennial objects.
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Our generator extends the generator of static item recommendations pre-
sented in [6] in two ways. First, our generator builds a stream of ratings, hence
it can be used to test recommenders designed for dynamic data. Second, and
most importantly, our generator builds the ratings’ stream upon a synthetic set
of evolving profiles, thus allowing the evaluation of learners designed for complex
dynamic environments. In particular, consider an application that categorizes
customers into classes A, B, C (A is best), given their response to recommenda-
tions and considering some demographic attributes (e.g. having children, having
a car etc). What synthetic data are needed to evaluate a learner for this appli-
cation? A synthetic set (or stream) of ratings is not sufficient, because it does
not contain customers (and their labels). Next to the stream of ratings, we need
a set that describes the customers and associates them to their ratings in a
non-random way. Further, since customer preferences may change, concept drift
must be incorporated into the relationship between customers and their ratings.
Our generator is designed for this kind of multi-relational (stream) learning.

The core idea of our generator is as follows. The preference of a user towards
some item(s) defines its behaviour. Multiple users’ exhibiting similar behaviour
can be grouped/categorised together as a single user profile. Conversely to learn-
ing task where these profiles are learned from among a group of users, the gen-
erator first creates these user profiles which serve as a prototypes. These profiles
are then used to generate individual user data according the item preferences
stored in them. Noise can be imputed to the data by forcing a user to rank in
discordance to her profile with some probability. Drift is imputed to the data by
allowing a profile to exist only for some timepoints and then forcing it to mutate
to one or more profiles with some probability.

The paper is organized as follows. In Section 2 we give a formal description
of the problem along with the related work. We explain the multi-relational
generator in Section 3 with some results in Section 4. We summarise and discuss
future improvements in Section 5.

2 Problem Specification and Background Literature

In this section we explain the learning task over the multiple interrelated streams
(i.e., slow and fast streams) in more detail, which our generator is going to si-
multe. In subsection 2.2 we also discuss the studies that address similar problems.

2.1 Problem Specification

In our introductory example, we considered a slow stream of users T and fast
ranking/transaction stream S1 that feeds the user stream (i.e., the users’) with
rantings/purchases from a slow stream of items S2. Stream of user is referred as
target streams as the learning task concerns solely T , e.g. finding groups of users
that show similar behaviour when rating/purchasing different items, predicting
whether a user will like a certain item (Y) or not (N), or labelling users on their
”lifetime value” for the company (typically in four classes A, B, C, D where A
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is best and D is worst). The contents of the inter-connected streams (i.e., the
ranking stream and the item stream via ranking stream) should be taken into
account when building the classifier.

Learning on a Stream of Perennial Objects. The stream of perennial ob-
jects (i.e., slow stream) T exhibits three properties that are atypical for streams.
Differently from conventional stream objects that are seen, processed and forgot-
ten, objects of T may not be deleted: an examinations office may file away the
results of a successful exam, but does not file away the students who passed the
exam; a product purchase may be shifted to a backup medium after completion,
but the customer who did the purchase remains in the database. One can even
argue that T is not a stream at all. However, it is obvious that new objects arrive
(new customers, new students), while old objects are filed away after some time
(e.g. students who completed their degree and customers who have quitted the
relationship with the company). We use the term perennial objects or stream of
perennial objects for the slow stream T .

Second, the objects in T may appear several times, e.g. whenever the prop-
erties of a user (e.g. her address) change and whenever this user is referenced
by a fast stream (i.e. when the user assigns a new rating or purchases a new
item). Third, the label of a T object may change over time: a user who earlier
responded positively towards and item (Y) may stop doing so (label becomes
N); a B-user may become an A-user or a C-user. Hence, the label of a perennial
objects x is not a constant; at every timepoint t, at which x is observed, its label
is label(x, t). The learning task is to predict this label at t, given the labelled
data seen thus far and given the streams that feed T .

2.2 Related Work

Our generator is inspired from the properties of the perennial stream and builds
on a generator for recommender systems by Symeonidis et al.[6]. This generator
is intended for learning in a static context. We outline it here briefly.

The generator of [6] produces a unipartite user-user (friendship) network and
a bipartite user-item rating network. In contrast to purely random (i.e., Erdos-
Renyi) graphs, where the connections among nodes are completely independent
random events, the synthetic model ensures dependency among the connections
of nodes, by characterizing each node with a m-dimensional vector with each
element a randomly selected real number in the interval [-1,1]. This vector rep-
resents the initial user profile used for the construction of the friendships and
ratings profiles, which are generated as follows:

– For the construction of the friendship network, two nodes are considered to
be similar and thus of high probability to connect to each other if they share
many close attributes in their initial user profile. Given a network size N and
a mean degree k of all nodes, the generator starts with an empty network
with N nodes. At each time step, a node with the smallest degree is randomly
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selected (there is more than one node having the smallest degree). Among all
other nodes whose degrees are smaller than k, this selected node will connect
to the most similar node with probability 1 − p, while a randomly chosen
one with probability p. The parameter p ∈ [0, 1] represents the strength
of randomness in generating links, which can be understood as noise or
irrationality that exists in almost every real system.

– For the construction of the user-item rating network, the generator follows
a similar procedure. It uses the following additional parameters as well: (i)
the ratings range, (ii) the mean number of rated items by all users. Notice
that each user can rate different items from others and has in his profile a
different number of rated items, following the power law distribution.

xSocial is a multi-modal graph generator that mimics real social networking
sites to produce simultaneously a network of friends and a network of their
co-participation [2]. In particular, xSocial consists of a network with N nodes,
each of which has a preference value calfi. At each time, every node performs
three independent actions (write a message, add a friend and comment on a
message). A node chooses his friends either by their popularity of by the number
of messages on which they have commented together, which is determined by
his preference calfi. A node can also follow the updated status of his friends by
putting comments on the corresponding newly written messages.

The generator of Symeonidis et al., [6] uses both structural (friendship net-
work) and content-based information (item-rating network) for making recom-
mendations to the users. However, it is only suitable for static learning. xSocial,
on the other hand, simulates the temporal/stream-based problem but it only
uses the structural information (i.e., networks of friends and their interactions)
for making recommendations to the users. Different from [6], our generator aims
to alleviate the problem of static recommendations by making use of the dy-
namic ratings profile (i.e., a user’s rating preferences may change overtime), and
unlike xSocial [2] its primary focus is on content-based recommendations.

3 Generating Profiles & Transactions with Concept Drift

Our generator is inspired by the idea of predicting user ratings in a recommenda-
tion engine, and builds upon the generator of [6] (c.f. Section 2.2). In particular,
our generator creates data according to the following scenario:

Each user adheres to a user profile, while each item adheres to an item
profile1; the user profiles correspond to classes. The rating of a user u
for an item i depends upon affinity/preference the of the user profile of
u towards the item profile of i; ratings are generated at each timepoint
t. At certain timepoints, user profiles mutate, implying that the ratings
of the users for the items change. An example of learner object for some

1 just as user profiles serve as prototypes for the generation of concrete user data (c.f.
Section 1), item profiles serve the same purpose
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Table 1. Parameters of the generator.

Param Description

P i set of item profiles with N i = |P i| number of profiles
Pu set of user profiles with Nu = |Pu| number of profiles

ni number of items per item profile
nu number of users per user profile

vi number of synthetic variables that describe an item profile
vu number of synthetic variables that describe a user profile

τd number of drift levels across the time axis
Au

d number of active user profiles at drift level d
L max lifetime of a drift level as number of timepoints

R max number of items rated by a user at any timepoint

φU→I the probability of a user profile U selecting an item from item
profile I for rating.

Item Profiles Var 1 Var 2 Var 3 Var 4

IP1 23 +4 52 +9 97 +2 8 +9

IP2 2 +9 1 +7 46 +3 91 +6

IP3 72 +7 71 +3 26 +2 52 +1

IP4 3 +4 2 +4 27 +5 25 +3

Fig. 1. Sample item profiles with vi = 4 synthetic variables. The mean and variance
associated with each variable are used to generate items according to the normal dis-
tribution.

learner is to predict the profile of a user at a given timepoint, when
provided with the users’ ratings data.

In more detail, our generator takes as input the parameters depicted in Table
1, and described in sequel. It generates: item profiles and from them items; user
profiles and from them users; and ratings of users for items at each timepoint.
A user profile may live at most L timepoints before it mutates.

Generation of item profiles and items.

Item profiles are described by vi synthetic variables. The generator creates a set
P i with N i item profiles and stores for each one the mean and variance of each
of the vi variables. Next, each of these item profiles is used as prototype for
the generation of ni items, producing ni ×N i items in total. Items also adhere
to the vi variables; the value of each variable in an item adhering to profile I
is determined by the mean and variance of this variable in the profile I. The
description of item profiles and is depicted in Figure 1.

The number of items considered (rated) at some timepoint may vary from
one timepoint to the next, but there is no bias towards items of some specific
profile(s). Hence, item profiles are not exhibiting concept drift.
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User Profiles Var 1 Var 2 Var 3 Item Profile Probabilities

UP1 13 +0 22 +5 51 +1
IP1 IP2 IP3 IP4

0.1 0.6 0.25 0.05

20 + 5 50 + 8 80 + 9 29 + 1

UP2 34 +4 55 +0 68 +9
IP1 IP2 IP3 IP4

0.7 0.1 0.1 0.1

90 + 2 25 + 5 93 + 4 9 + 1

UP3 21 +5 98 +4 1 +5
IP1 IP2 IP3 IP4

0.2 0.5 0.1 0.2

42 + 2 95 + 2 10 + 0 12 + 5

Fig. 2. Sample user profiles with mean and variance for synthetic variables with prob-
abilities of selecting an item from a certain item profile (row 1) and mean and variance
of the rating that item (row 2), where vu = 3.

Generation and transition of user profiles.

User profiles are described by a set of parameters vu. These are synthetic vari-
ables. The generator creates a set Pu with Nu user profiles and stores for each
one the mean and variance of each variable in vu. User profiles serve as tem-
plates for the generation of users, in much the same way as item profiles are
used to generate items. However, there are two main differences. First, user pro-
files are subject to transition, and not all of them are active at each drift level
d = 1, . . . , τd. Second, a user profile exhibits affinity towards some item profiles,
expressed through the probabilities between the item profile and the user profile.
The description of user profiles is depicted in Figure 2.

The affinity of user profiles towards item profiles manifests itself in the user
ratings: a generated user adheres to some user profile and rates items belonging
to the item profile(s) preferred by her user profile. The affinity φU→I is defined
as the probability of a user profile U selecting an item from item profile I for
rating. The probability φU→I is controlled by a user-defined global parameter
UP2IP ∈ [0, 1]. If UP2IP is close to zero, user profiles show strong affinity
towards a certain item profile while if the value is closer to 1, the probabilities
are initialised randomly.

At each drift level d = 1, . . . , τd, only a subset of user profiles Au
d ⊆ Pu are

active2. The active profiles at each drift level is determined at the beginning. For
drift level d > 1, the generator maps the profiles Au

d−1 of level d− 1, to the new
profiles Au

d of level d on similarity, i.e. the transition probability from an old to
a new profile is a function of the similarity between the two profiles. The result
is a profile transition graph, an example of which is depicted in Figure 3. This
graph is generated and then the thread of each profile is recorded for inspection.

The coupling of profile transition to the profile similarity function ensures
that profile mutation corresponds to a gradual drift rather than an abrupt shift.
The extent of profile mutation is further controlled by a user-defined global
variable ∈ [0, 1] that determines the true preference of an old user profile for a

2 the number of active profiles at each drift level d is an integer and calculated using
Nu

d
and is similar for each drift level
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Fig. 3. A profile transition graph; each column corresponds to a timepoint, indicat-
ing that the number of profiles/classes may change from one timepoint to the next
(transition probabilities between level 2 and level 3 have been omitted)

new user profile. A value close to zero means that the most similar new profile will
always be preferred. Larger values allow for a weaker preferential attachment,
while a value close to 1 means that the new profile is chosen randomly, and the
transition is essentially a concept shift rather than a drift (a ”drift” is a change
of gradual nature, e.g. when a profile mutates into a similar one; while a ”shift”
is a more drastic and abrupt change, e.g. a profile being replaced by another
one). The similarity between two user profiles U and U ′ is defined in Equation 1.

sim(U ,U ′) =

√ ∑

I∈P i

(φU→I − φU ′→I) (1)

where φU→I is the prob. of rating an item from profile I for U , U ∈ Au
d and

U ′ ∈ Au
d+1.

The affinity of user profiles towards item profiles manifests itself in the user
ratings: a generated user adheres to some user profile and rates items belonging
to the item profile(s) preferred by her user profile. Affinity is also affected by
profile transitions. Once a user profile U mutates to U ′, all its users adhere to
the U ′ profile: they prefer the item profiles to which U ′ shows affinity, and rate
items adhering to these item profiles.

Generation of users and ratings.

For each user profile U ∈ Pu, the generator creates nu users. As for items, users
adhere to the set of parameters vu as user profiles; the value of each parameter
in a user adhering to profile U is determined by the mean and variance of this
variable in the profile U .

The profiles of each drift level d exists for at most L timepoints, before profile
transition occurs; the lifetime of a profile is chosen randomly. At each of these
timepoints, the generator creates ratings for all users in each active profile. For
each user profile U and user u adhering to U , and for each item profile I is
selected based on the probability φU→I . An item i is randomly chosen from the
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I and a rating value is generated based on mean and variance in U for rating
(c.f. Figure 2). A user can rank at most R items per timepoint.

4 Working with the Data Generator

We have used our generator to evaluate the performance of the classification
rule miner (CRMPES) [5] which is incorporated into a tree induction algorithm
(TrIP) [4]. CRMPES is used to generate new richer attributes that exploit de-
pendency between attributes by using classification rules which otherwise are
ignored by the TrIP. To test CRMPES, we developed the generator with user
and item profiles. The purpose was to study how CRMPES adapts to complex
patterns (spanning multiple attributes) in the presence of concept drift. The
details on the experiments can be found in the paper [5].

5 Conclusions

We presented a multi-stream generator that has been inspired from the domain
of recommendation system. It generates ratings data for users according to user
profiles. With time the profiles mutates into newer ones. The mutation can be
adjusted to simulate drastic shifts as well more gradual drifts. The generator can
be used for evaluating supervised and unsupervised learning task for discovering
and adaptation to concept drift.
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